skip to main content

ANALISIS PRODUKTIVITAS ALAT TANGKAP SCOOP NET YANG BEROPERASI DI PERAIRAN CILACAP

*Fajar Adiyanto  -  Jenderal Soedirman University, Indonesia
Aristi Dian Purnama Fitri  -  Program Studi Perikanan Tangkap, Fakultas Perikanan dan Ilmu Kelautan, Universitas Diponegoro, Indonesia
Irfan Hanifa  -  Program Studi Manajemen Sumber daya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Jenderal Soedirman, Indonesia
Ani Suryanti  -  Program Studi Manajemen Sumber daya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Jenderal Soedirman | Program Studi Sumberdaya Akuatik, Fakultas Perikanan dan Ilmu Kelautan, Universitas Jenderal Soedirman, Indonesia
Sugeng Hartono  -  Program Studi Manajemen Sumber daya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Jenderal Soedirman, Indonesia
Teuku Junaidi  -  Program Studi Manajemen Sumber daya Perairan, Fakultas Perikanan dan Ilmu Kelautan, Universitas Jenderal Soedirman, Indonesia

Citation Format:
Abstract

Kajian mengenai jaring scoop net di perairan Cilacap masih tergolong minim. Keterbatasan data perikanan ini berdampak pada rendahnya pemahaman terhadap manfaat dan kontribusi alat tangkap tersebut terhadap perikanan skala kecil. Penelitian ini bertujuan untuk mengkaji nilai produktivitas jaring scoop net. Pengumpulan data dilakukan melalui observasi dan wawancara, sedangkan analisis produktivitas dihitung menggunakan pendekatan Catch per Unit Effort (CPUE). Hasil penelitian menunjukkan bahwa komposisi hasil tangkapan terdiri dari empat spesies, yaitu teri putih (Stolephorus commersonii), teri nasi (S. indicus), teri jengki (S. insularis), dan tembang (Sardinella fimbriata). Jenis tangkapan didominasi oleh teri putih (S. commersonii) sebesar 57,63%, sedangkan jumlah terendah berasal dari teri nasi (S. indicus) sebesar 0,7%. Nilai CPUE tertinggi yang diperoleh adalah 500 kg/trip, rata-rata sebesar 260 kg/trip, dan terendah sebesar 77 kg/trip. Tangkapan spesies S. commersonii paling banyak diperoleh pada periode Agustus–Oktober. Periode tersebut bertepatan dengan musim puncak migrasi dan pemijahan ikan pelagis kecil di perairan selatan Jawa, yang ditandai dengan suhu perairan yang lebih hangat dan peningkatan ketersediaan fitoplankton sebagai sumber makanan utama. Hasil ini menunjukkan bahwa produktivitas jaring scoop net masih cukup tinggi dan dapat dimanfaatkan sebagai dasar pertimbangan dalam pengelolaan perikanan skala kecil yang berkelanjutan di wilayah pesisir Cilacap.

Fulltext View|Download
Keywords: Scoop net; Produktivitas; Perairan Cilacap

Article Metrics:

  1. Adiyanto, F., Prihantoko, K. E., & Boesono, H. (2018). Komposisi ikan hasil tangkapan jaring caduk (scoop net) yang beroperasi di perairan Cilacap. Jurnal Perikanan Tangkap, 2(3), 14–20
  2. Alam, S., Rahman, M., & Arif, A. A. (2021). Challenges and opportunities in artisanal fisheries (Sonadia Island, Bangladesh): The role of legislative, policy and institutional frameworks. Ocean and Coastal Management, 201, 105424. https://doi.org/10.1016/j.ocecoaman.2020.105424
  3. Apine, E., Turner, L. M., Rodwell, L. D., & Bhatta, R. (2019). The application of the sustainable livelihood approach to small scale-fisheries: The case of mud crab Scylla serrata in South West India. Ocean and Coastal Management, 170, 17–28. https://doi.org/10.1016/j.ocecoaman.2018.12.024
  4. Ariana, M., et al. (2020). Remote sensing for assessing the potential anchovy fishing ground: CPUE-based analysis with environmental data. AACL Bioflux, 13(4), 2273–2282
  5. Baldé, B. S., Brehmer, P., Sow, F. N., Ekau, W., Kantoussan, J., Fall, M., & Diouf, M. (2018). Population dynamics and stock assessment of Ethmalosa fimbriata in Senegal call for fishing regulation measures. Regional Studies in Marine Science, 24, 165–173. https://doi.org/10.1016/j.rsma.2018.08.003
  6. Boëns, A., Grellier, P., Lebigre, C., & Petitgas, P. (2021). Determinants of growth and selective mortality in anchovy and sardine in the Bay of Biscay. Fisheries Research, 239, 105947. https://doi.org/10.1016/j.fishres.2021.105947
  7. Chaliluddin, M. A. (2019). Unggulan perikanan tangkap Kabupaten Aceh Jaya: Productivity catches and leading commodities of capture fisheries in Aceh Jaya District. Jurnal Galung Tropika, 8(2), 82–90
  8. Chande, M., Kimirei, I. A., Igulu, M. M., Kuguru, B., Kayanda, R., Mwakosya, C., Kangwe, S. J., Sululu, J., & Ulotu, E. (2019). Assessment of the impacts of artisanal fishing gears on nearshore fish stocks along coastal waters off the Kilwa–Mafia seascape in Tanzania. Regional Studies in Marine Science, 27, 100531. https://doi.org/10.1016/j.rsma.2019.100531
  9. Costa, P. L., Castillo Valderrama, P. R., & Madureira, L. A. S. P. (2016). Relationships between environmental features, distribution and abundance of the Argentine anchovy, Engraulis anchoita, on the South West Atlantic continental shelf. Fisheries Research, 173, 229–235. https://doi.org/10.1016/j.fishres.2015.07.008
  10. Das, I., Lauria, V., Kay, S., Cazcarro, I., Arto, I., Fernandes, J. A., & Hazra, S. (2020). Effects of climate change and management policies on marine fisheries productivity in the north-east coast of India. Science of the Total Environment, 724, 138082. https://doi.org/10.1016/j.scitotenv.2020.138082
  11. De la Cruz-González, F. J., Patiño-Valencia, J. L., Luna-Raya, M. C., & Cisneros-Montemayor, A. M. (2018). Self-empowerment and successful co-management in an artisanal fishing community: Santa Cruz de Miramar, Mexico. Ocean and Coastal Management, 154, 96–102. https://doi.org/10.1016/j.ocecoaman.2018.01.008
  12. De la Cruz-González, M. I., Ramírez-Valverde, B., & Sánchez-Hernández, M. (2018). Socioeconomic importance of small-scale fisheries in coastal communities. Ocean & Coastal Management, 165, 1–8. https://doi.org/10.1016/j.ocecoaman.2018.07.013
  13. Digitani IPB. (2023). Ancaman penurunan hasil tangkapan laut Indonesia 2050 akibat overfishing. Bogor: Institut Pertanian Bogor. Retrieved from https://digitani.ipb.ac.id
  14. Dinas Kelautan dan Perikanan (DKP) Cilacap. (2021). Laporan tahunan hasil tangkapan di Cilacap
  15. Duguid, W. D. P., Boldt, J. L., Chalifour, L., Greene, C. M., Galbraith, M., Hay, D., Lowry, D., McKinnell, S., Neville, C. M., Qualley, J., Sandell, T., Thompson, M., Trudel, M., Young, K., & Juanes, F. (2019). Historical fluctuations and recent observations of northern anchovy Engraulis mordax in the Salish Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 159, 22–41. https://doi.org/10.1016/j.dsr2.2018.05.018
  16. Duguid, W. D., Thompson, R. J., & Mills Flemming, J. E. (2019). Competition among fish species and its role in structuring marine communities. Marine Ecology Progress Series, 616, 17–33. https://doi.org/10.3354/meps12937
  17. Fernández-Corredor, E., Albo-Puigserver, M., Pennino, M. G., Bellido, J. M., & Coll, M. (2021). Influence of environmental factors on different life stages of European anchovy (Engraulis encrasicolus) and European sardine (Sardina pilchardus) from the Mediterranean Sea: A literature review. Regional Studies in Marine Science, 41, 101606. https://doi.org/10.1016/j.rsma.2020.101606
  18. Fujita, R. (2021). The assessment and management of data limited fisheries: Future directions. Marine Policy, 133, 104730. https://doi.org/10.1016/j.marpol.2021.104730
  19. Gatti, P., Cominassi, L., Duhamel, E., Grellier, P., Le Delliou, H., Le Mestre, S., Petitgas, P., Rabiller, M., Spitz, J., & Huret, M. (2018). Bioenergetic condition of anchovy and sardine in the Bay of Biscay and English Channel. Progress in Oceanography, 166, 129–138. https://doi.org/10.1016/j.pocean.2017.12.006
  20. Gücü, A. C., Ak, O., & Aydin, M. (2018). Relationship between chlorophyll-a concentration and fish catch: Implications for fisheries management. Mediterranean Marine Science, 19(1), 38–46. https://doi.org/10.12681/mms.16223
  21. Gücü, A. C., Genç, Y., Başçınar, N. S., Dağtekin, M., Atılgan, E., Erbay, M., Akpınar, İ. Ö., & Kutlu, S. (2018). Inter and intra annual variation in body condition of the Black Sea anchovy, Engraulis encrasicolus ponticus—Potential causes and consequences. Fisheries Research, 205, 21–31. https://doi.org/10.1016/j.fishres.2018.03.015
  22. Hernández-Santoro, C., Contreras-Reyes, J. E., & Landaeta, M. F. (2019). Intra-seasonal variability of sea surface temperature influences phenological decoupling in anchovy (Engraulis ringens). Journal of Sea Research, 152, 101765. https://doi.org/10.1016/j.seares.2019.101765
  23. Hernández-Santoro, M., Fernández, E., & Gutiérrez, C. (2019). Influence of sea surface temperature on the distribution and abundance of small pelagic fishes. Journal of Sea Research, 150, 101–109. https://doi.org/10.1016/j.seares.2019.05.004
  24. Huret, M., Lebigre, C., Iriondo, M., Montes, I., & Estonba, A. (2020). Genetic population structure of anchovy (Engraulis encrasicolus) in north-western Europe and variability in the seasonal distribution of the stocks. Fisheries Research, 229, 105619. https://doi.org/10.1016/j.fishres.2020.105619
  25. Imron, M., Kusnandar, & Komarudin, D. (2020). Composition and seasonal pattern of catched fish in Tegal waters of Central Java. Jurnal Biologi Tropis, 4(1), 33–46
  26. Irnawati, R., Surilayani, D., Susanto, A., Munandar, A., & Rahmawati, A. (2018). Potential yield and fishing season of anchovy (Stolephorus sp.) in Banten, Indonesia. AACL Bioflux, 11(3), 804–809
  27. Kamal, M. M., Wahyudi, T. R., & Nugraha, H. (2020). Overfishing impact on fish size and population structure: A case study in Indonesian coastal waters. Indonesian Fisheries Research Journal, 26(2), 73–82. https://doi.org/10.15578/ifrj.26.2.2020.73-82
  28. Kamal, M., Ernawati, Y., & Dewi, N. N. (2020). Length at first maturity, spawning time, and reproductive output in the females of Hamilton’s anchovy (Thryssa hamiltonii Gray, 1835). Jurnal Biologi Tropis, 20(1), 2–7. https://doi.org/10.29303/jbt.v20i1.1623
  29. Khumaera, N., Fadli, N., & Dewiyanti, I. (2022). Analisis hasil tangkapan alat tangkap anco di perairan estuari Krueng Aceh. Journal of Environmental Engineering and Sustainable Technology, 9(2), 142–150. https://doi.org/10.21070/jeest.v9i2.14063
  30. Lestari, C., et al. (2025). Productivity and seasonal index of anchovy catch at Carocok Coastal Fishing Port (2016–2023). Journal of Fisheries and Coastal Studies
  31. Linnane, A., Smith, A. D. M., McGarvey, R., Feenstra, J. E., Matthews, J. M., Hartmann, K., & Gardner, C. (2019). Trends in productivity of southern rock lobster Jasus edwardsii across south-eastern Australia: Evidence of a regime shift? Fisheries Research, 219, 105308. https://doi.org/10.1016/j.fishres.2019.105308
  32. Liu, S., Liu, Y., Alabia, I. D., Tian, Y., Ye, Z., Yu, H., Li, J., & Cheng, J. (2020). Impact of climate change on wintering ground of Japanese anchovy (Engraulis japonicus) using marine geospatial statistics. Frontiers in Marine Science, 7, 604. https://doi.org/10.3389/fmars.2020.00604
  33. Mamula, A., & Collier, T. (2015). Multifactor productivity, environmental change, and regulatory impacts in the U.S. West Coast groundfish trawl fishery, 1994–2013. Marine Policy, 62, 326–336. https://doi.org/10.1016/j.marpol.2015.06.002
  34. Mongabay. (2023). Overfishing in Indonesia: Threats and solutions for sustainable fisheries. Retrieved from https://www.mongabay.co.id
  35. Nakayama, S. I., Takasuka, A., Ichinokawa, M., & Okamura, H. (2018). Climate change and interspecific interactions drive species alternations between anchovy and sardine in the western North Pacific: Detection of causality by convergent cross mapping. Fisheries Oceanography, 27(4), 312–322. https://doi.org/10.1111/fog.12254
  36. Pan, M., & Walden, J. (2015). Measuring productivity in a shared stock fishery: A case study of the Hawaii longline fishery. Marine Policy, 62, 302–308. https://doi.org/10.1016/j.marpol.2015.07.018
  37. Prestrelo, L., Oliveira, R., & Vianna, M. (2019). A new proposal to classify small fishing vessels to improve tropical estuarine fishery management. Fisheries Research, 211, 100–110. https://doi.org/10.1016/j.fishres.2018.11.010
  38. Puspito, G., Ahmad, S., & Sururi, M. (2017). Selection of lamp reflector construction and fishing time of lift net. Egyptian Journal of Aquatic Research, 43(2), 155–160. https://doi.org/10.1016/j.ejar.2017.06.003
  39. Puspito, G., Wiratmaja, I. G., & Sutiawan, I. (2024). Design and operational performance of scoop net with halogen lamp in Muara Morosari, Indonesia. Journal of Fisheries Engineering, 40(1), 55–64. https://li01.tci-thaijo.org/index.php/JFE/article/view/262360
  40. rnawati, R., Surilayani, D., Susanto, A., Munandar, A., & Rahmawati, A. (2018). Potential yield and fishing season of anchovy (Stolephorus sp.) in Banten, Indonesia. AACL Bioflux, 11(3), 804–809. Retrieved from https://www.researchgate.net/publication/326990269
  41. Safruddin, R. H., & Zainuddin, M. (2018). Effects of environmental factors on anchovies Stolephorus sp. distribution in Bone Gulf, Indonesia. AACL Bioflux, 11(2), 387–393
  42. Safruddin, S., & Zainuddin, M. (2018). Variability of oceanographic conditions and its relation to anchovy catch in Bone Bay, Indonesia. AACL Bioflux, 11(4), 1287–1296. Retrieved from http://www.bioflux.com.ro
  43. Sánchez-Garrido, J. C., Werner, F. E., Fiechter, J., Rose, K. A., Curchitser, E. N., Ramos, A., García Lafuente, J., Arístegui, J., Hernández-León, S., & Rodríguez Santana, A. (2019). Decadal-scale variability of sardine and anchovy simulated with an end-to-end coupled model of the Canary Current ecosystem. Progress in Oceanography, 171, 212–230. https://doi.org/10.1016/j.pocean.2018.12.009
  44. Santoro, M., Sinerchia, M., Bonomo, S., et al. (2020). Climate change and variability impacts on small pelagic fish in the Mediterranean Sea. Frontiers in Marine Science, 7, 588. https://doi.org/10.3389/fmars.2020.00588
  45. Sari, R. P., & Akbarsyah, N. (2020). Produktivitas alat tangkap pancing ulur di Provinsi Nusa Tenggara Barat. Aurelia Journal, 1(2), 53. https://doi.org/10.15578/aj.v1i2.8946
  46. Simarmata, R., Yulianto, T., & Djunarsjah, E. (2014). Seasonal pattern of Sardinella fimbriata catch in Sunda Strait. Indonesian Fisheries Research Journal, 20(2), 81–88. https://doi.org/10.15578/ifrj.20.2.2014.81-88
  47. Taylor, M. D., & Loneragan, N. R. (2019). Catchment-derived stressors, recruitment, and fisheries productivity in an exploited penaeid shrimp. Regional Studies in Marine Science, 29, 100628. https://doi.org/10.1016/j.rsma.2019.100628
  48. Walden, J., Fissel, B., Squires, D., & Vestergaard, N. (2015). Productivity change in commercial fisheries: An introduction to the special issue. Marine Policy, 62, 289–293. https://doi.org/10.1016/j.marpol.2015.06.019
  49. Wang, S. L., & Walden, J. B. (2021). Measuring fishery productivity growth in the northeastern United States 2007–2018. Marine Policy, 128, 104467. https://doi.org/10.1016/j.marpol.2021.104467
  50. Xing, Q., Yu, H., Ito, S., Ma, S., Yu, H., Wang, H., Tian, Y., Sun, P., Liu, Y., Li, J., & Ye, Z. (2021). Using a larval growth index to detect the environment–recruitment relationships and its linkage with basin-scale climate variability: A case study for Japanese anchovy (Engraulis japonicus) in the Yellow Sea. Ecological Indicators, 122, 107301. https://doi.org/10.1016/j.ecolind.2020.107301
  51. Xing, X., Zhang, Z., Sun, X., et al. (2021). Environmental drivers of anchovy distribution in the China seas. Progress in Oceanography, 193, 102530. https://doi.org/10.1016/j.pocean.2021.102530
  52. Zhou, X., Sun, Y., Huang, W., Smol, J. P., Tang, Q., & Sun, L. (2015). The Pacific Decadal Oscillation and changes in anchovy populations in the Northwest Pacific. Journal of Asian Earth Sciences, 114, 504–511. https://doi.org/10.1016/j.jseaes.2015.06.027

Last update:

No citation recorded.

Last update:

No citation recorded.