The Development of Autonomous Humanoid Soccer Robot

Pengembangan Robot Humanoid Pemain Bola Otonom

*Hadha Afrisal scopus  -  Departemen Teknik Elektro, Fakultas Teknik, Universitas Diponegoro, Indonesia
Munadi Munadi  -  Departemen Teknik Mesin, Fakultas Teknik, Universitas Diponegoro, Indonesia
Muhammad Faris  -  Departemen Teknik Elektro dan Teknologi Informasi, Universitas Gadjah Mada, Indonesia
Bakhtiar Alldino Ardi Sumbodo  -  Departemen Ilmu Komputer dan Elektronika, Universitas Gadjah Mada, Indonesia
Published: 31 May 2019.
Open Access
Citation Format:
Article Info
Section: Artikel
Language: EN
Statistics: 589 522
Abstract

This research aims to develop an autonomous humanoid soccer robot. The humanoid soccer robot is designed using 20 joints which are equipped with dynamixel servo motor AX-12 (upper body) and RX-24 (lower body) and is controlled by using servo controller board CM-700 (ATMega2561). The humanoid soccer robot is 44 cm in height and is equipped with a balancing system of using gyro sensor LPR530 and accelerometer KXM52-1050. In order to detect object and to navigate autonomously, the humanoid soccer robot is equipped with a CMOS camera which is controlled using CMUCAM board (LPC2016). The experiment shows that the humanoid soccer robot has ability to walk with average speed of 14.37 cm/second and is able to achieve a top speed of up to 20 cm/second. The developed humanoid soccer robot can play soccer autonomously: to locate the ball, to detect the goalpost, and to score the goal to the goalpost.

Keywords: robot; humanoid; soccer; autonomous; ball detection

Article Metrics:

  1. Antonello, R., & Oboe, R. (2011). MEMS gyroscopes for consumers and industrial applications. In Microsensors. IntechOpen.
  2. Apostol, T. M., & Mnatsakanian, M. A. (2000). Finding centroids the easy way. Math Horizons, 8, 7-12.
  3. Bliley, K. E., Schwab, D. J., Holmes, D. R., Kane, P. H., Levine, J. A., Daniel, E. S., & Gilbert, B. K. (2006). Design of a compact system using a MEMS accelerometer to measure body posture and ambulation. 19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06), (pp. 335-340).
  4. Burkhard, H.-D., Duhaut, D., Fujita, M., Lima, P., Murphy, R., & Rojas, R. (2002). The road to RoboCup 2050. IEEE Robotics & Automation Magazine, 9, 31-38.
  5. Farazi, H., Allgeuer, P., & Behnke, S. (2018). A monocular vision system for playing soccer in low color information environments. arXiv preprint arXiv:1809.11078.
  6. Gerndt, R., Seifert, D., Baltes, J. H., Sadeghnejad, S., & Behnke, S. (2015). Humanoid robots in soccer: Robots versus humans in RoboCup 2050. IEEE Robotics & Automation Magazine, 22, 147-154.
  7. Ismael, O. Y., & Hedley, J. (2016). Development of an Omnidirectional Mobile Robot Using Embedded Color Vision System for Ball Following. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS), 22, 231-242.
  8. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. 2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422), 2, pp. 1620-1626.
  9. Kim, K.-I., Son, Y. I., & Kim, P. B. (2004). Construction of small humanoids with a new joint actuator module. IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004, 5, pp. 4510-4514.
  10. Mobalegh, H. (2012). Development of an autonomous humanoid robot team. Ph.D. dissertation.
  11. Peng, S., Shui, H., Li, G., & Ma, H. (2010). Walking gait planning of humanoid soccer robot based on the desired ZMP trajectories. 2010 The 2nd International Conference on Industrial Mechatronics and Automation, 2, pp. 127-131.
  12. Rowe, A., Goode, A., Goel, D., & Nourbakhsh, I. (2007). CMUcam3: An open programmable embedded vision sensor. International conferences on intelligent robots and systems.
  13. Smith, A. R. (1978). Color gamut transform pairs. ACM Siggraph Computer Graphics, 12, 12-19.
  14. Stephon, A. C., & Khorbotly, S. (2012). A camera-based target tracking system for football playing robots. Proceedings of the 2012 44th Southeastern Symposium on System Theory (SSST), (pp. 164-167).
  15. Thai, C. N. (2017). ROBOTIS_Robot Systems. In Exploring Robotics with ROBOTIS Systems (pp. 5-21). Springer.