Analysis of Particulates and SO2 Removal from Coal Combustion Emissions Using Cyclone and Wet Scrubber With Textile Wastewater Feed

Reuse of wastewater in the industry is mostly accomplished for watering plants. In a closed cycle, however, industrial wastewater can be returned through treatment to save water usage. This study aims to analyze textile wastewater's ability to be used as scrubbing liquid in the SO2 gas and particulate removal from coal combustion using a packed wet scrubber. Usually, the textile industry uses boiler fueled by coal and discharging base/alkaline wastewater. The method is carried out experimentally using a prototype device using a combination of cyclone and scrubber, with a source of coal combustion gas emissions. We did experiments using textile wastewater four times and two times using clean water as a control. We monitor the SO2, particulate emission in the gas stream, and pH, sulfate levels, and TSS levels in collected wastewater according to SNI. SO2 gas and particulates from coal combustion will be absorbed by the scrubber's wastewater spray so that SO2 will dissolve into sulfate, particulate matter into TSS. The study results using textile wastewater showed the removal efficiency of particulates on cyclone by 34-78%. The removal efficiency of SO2 on wet scrubber was only 24.7%. There was an increase in TSS levels after passing through the scrubber by 46%. The rise in TSS and sulfate concentrations in the wastewater indicates the absorption of SO2 and particulates into wastewater. Based on this result, we can use textile wastewater for controlling the emission of SO2 and particulate from coal combustion by feeding it for the scrubber. However, the efficiency of this process is not optimal.
Article Metrics:
- Abdurrakhman, A., Kurniawan, D., Adhim, M.M.(2018). The Effect of Temperature Variation on Water Scrubber System to Optimize Biogas Purification. E3S Web of Conferences 42:01006
- Buscio, V., López-Grimau, V., Álvarez, M. D., & Gutiérrez-Bouzán, C. (2019). Reducing the environmental impact of textile industry by reusing residual salts and water: ECUVal system. Chemical Engineering Journal, 373(March), 161–170
- Byatt-Smith, J., Day, R., Harlen, O., Howison, S. D., Lister, J., Smith, S. L., & Stone, R. (1996). Minimum Particle Size for Cyclone Dust Separator. 1–6
- de Aquim, P. M., Hansen, É., & Gutterres, M. (2019). Water reuse: An alternative to minimize the environmental impact on the leather industry. Journal of Environmental Management, 230, 456–463
- Dos Santos, A.B., Cervantes, F.J., van Lier, J.B. (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresoure Technology, 98, 2369–2385
- Environmental Protection Agency. (2005). Appendix b cam illustrations. https://www.epa.gov/sites/production/files/2016-05/documents/draftcamappb.pdf, accessed at November 2nd, 2020
- Erdumlu, N., Ozipek, B., Yilmaz, G., Topatan, Z. (2012). Reuse of Effluent Water Obtained In Different Textile Finishing Processes. Autex Research Journal, 12(1), 23 - 28
- Feng, X., Wang, N., & Chen, E. (2006). Water system integration in a catalyst plant. Chemical Engineering Research and Design, 84(8A), 645–651
- Hansen, E., Rodrigues, M.A.S., de Aquim, P.M. (2016). Wastewater reuse in a cascade based system of a petrochemical industry for the replacement of losses in cooling towers. Journal of Environmental Management, 181, 157-162
- Huang, A. N., Ito, K., Fukasawa, T., Fukui, K., & Kuo, H. P. (2018). Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator. Journal of the Taiwan Institute of Chemical Engineers, 90, 61–67
- Huboyo, H.S., Sudarno (2019). The use of artificial wastewater for water feeding of scrubber for treatingcoal burning emission. IOP Conf. Ser.: Earth Environ. Sci. 361 012019
- Huboyo, H.S., Sudarno, Prassanty L.N (2020). Wet Scrubber for Coal Combustion with The Use of Textile Wastewater Feeding. IOP Conf. Series: Earth and Environmental Science. 506 (2020) 012012
- Richards, J.R (2000). Control of gaseous emissions: student manual. ICES Ltd. The Multimedia Group, Raleigh North Carolina, USA
- Kim, J. C., & Lee, K. W. (1990). Experimental study of particle collection by small cyclones. Aerosol Science and Technology, 12(4), 1003–1015
- Munawer, M. E. (2018). Human health and environmental impacts of coal combustion and post-combustion wastes. Journal of Sustainable Mining, 17(2), 87–96
- Ray, M. B., Luning, P. E., Hoffmann, A. C., Plomp, A., & Beumer, M. I. L. (1998). Improving the removal efficiency of industrial-scale cyclones for particles smaller than five micrometre. International Journal of Mineral Processing, 53(1–2), 39–47
- Rosi, O.L, Casarci, M, Mattioli, D, Florio L.D. (2007). Best available technique for water reuse in textile SMEs (Battle Life Project) Desalination 206(1-3), 614-619
- Shaikh, M. A. (2009). Water conservation in textile industry. Pakistan Textile Journal, 58(11), 48–51
- Sharma, K.P., Sharma, S., Sharma S, Singh, P.K., Kumar, S., Grover, R., Sharma PK. (2007) A comparative study on characterization of textile wastewaters (untreated and treated) toxicity by chemical and biological tests. Chemosphere 69, 48–54
- Sharma, R., Acharya, S., Sharma, A.K.(2010). Effect of absorption of sulphur dioxide in sodium hydroxide solution to protect environment : a case study at shree power, Beawar, Rajasthan. International Journal of Chemical Science 8(2), 1021-1032
- Nalbandian, H. (2012). Trace element emissions from coal. In International Energy Agency Clean Coal Centre. ISBN 978-92-9029-523-5
- Wei, Q., Sun, G., & Yang, J. (2019). A model for prediction of maximum-efficiency inlet velocity in a gas-solid cyclone separator. Chemical Engineering Science, 204, 287–297
- Yaseen, D.A., Scholz, M. (2016) Shallow pond systems planted with Lemna minor treating azo dyes. Ecological Engineering. 94:295–305
- Yin, H., Qiu, P., Qian, Y., Kong, Z., Zheng, X., Tang, Z., Guo, H. (2019). Textile Wastewater Treatment for Water Reuse: A Case Study. Processes 7(34), 2 - 21
Last update: 2021-03-05 05:36:52
Last update: 2021-03-05 05:36:53
License URL: http://creativecommons.org/licenses/by-sa/4.0
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to jurnal TEKNIK and Faculty of Engineering, Diponegoro University as publisher of the journal.
Copyright transfer agreement can be found here: [Copyright transfer agreement in doc] and [Copyright transfer agreement in pdf].