skip to main content

The development of a588 modified laterite steel using thermomechanical and low-temperature tempering process for weather resistant steel

Pengembangan Baja Laterit Modifikasi A588 Menggunakan Proses Termomekanikal Diikuti dengan Proses Temper Temperatur Rendah untuk Aplikasi Baja Tahan Cuaca

*Miftakhur Rohmah orcid scopus  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Dedi Irawan  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Dedi P. Utama  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Toni B. Romijarso  -  Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
Laterite Steel A-588 has the potential to be a high strength low alloy for Corten steel application. Laterite steel A-588 is developed through a thermomechanical process followed by a tempering process to obtain high strength and corrosion resistance. This study aims to determine the correlation between the addition of nickel content, the variation of the cooling rate during heat treatment to the mechanical properties, and the corrosion resistance of A-588 laterite steel. The Cu, Cr, Ni, P, and Si elements significantly impact microstructure transformation. Laterite Steel A-588 with nickel and thermo-mechanical process variation has been focused on in this research. Laterite steel with 0,42%, 1%, 2%, and 3% nickel varied was homogenized, hot rolled, and heat treated with three cooling variations by water, oil, and air. They are processed with 150 C tempering. Low tempering temperature caused fine carbide precipitation and phase transition of martensite to bainite. This resulted in bainite as the final microstructure, lath tempered martensite, carbide, and ferrite. 3% Ni with a fast cooling rate increased the tempered martensite and bainite phase formation. It allowed the strength and hardness to increase relatively, followed by decreased elongation and corrosion resistance caused by the galvanic reaction. Most optimal of mechanical properties determined at a sample with 2% nickel in a water medium (strength 1203 MPa, elongation 10%, hardness 404 BHN, corrosion rate 1,306 mpy).
Fulltext View|Download
Keywords: lateritic steel a-588; martensite tempered; low temperature temper; thermomechanical

Article Metrics:

  1. Ali, M., Porter, D., Komi, J., Eissa, M., Faramawy, H., & Mattar, T. (2019). Effect of cooling rate and composition on microstructure and mechanical properties of ultrahigh-strength steels. Journal of Iron and Steel Research International, 1350-1365
  2. An, F., Zhao, S., Xue, X., Wang, J., Yuan, G., & Liu, C. (2020). Incompleteness of bainite transformation in quenched and tempered steel under continuous cooling conditions. Journal of Materials Research and Technology, 8985-8996
  3. Atapek, S., Polat, S., & Zor, S. (2013). Effect of Tempering Temperature and Microstructure on the Corrosion Behavior of a Tempered Steel. Protection of Metals and Physical Chemistry of Surfaces, 240–246
  4. Caballero, F. G.-M. (2012). Phase transformations in advanced bainitic steels. In E. P. Edmonds, Phase Transformations in Steels (pp. 271–294). Cambridge: Woodhead Publishing Limited
  5. Canale, L. C. (2014). Introduction to Steel Heat Treatment. Comprehensive Materials Processing, 3–37
  6. Cano, H. D. (2017). Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities. Materials and Corrosion, 69(1), 8-19
  7. Chen, A.-h., Xu, J.-q., Li, R., & Li, H.-l. (2012). Corrosion Resistance of High Performance Weathering Steel for Bridge Building Applications. Journal of Iron and Steel Research International , 19, 59-63
  8. Citrawati, F., Dwiwandono, R., & Firmansyah, L. (2020). The Effect of Ni on the Formation of Bainite in Fe-Ni Lateritic Steels through Semi-continuous Cooling Method. International Journal of Technology, 60-70
  9. Díaz, I. C. (2018). Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments. Corrosion Science, 141, 146–157
  10. Fan, Y., Liu, W., Sun, Z., Chowwanonthapunya, T., Zao, Y., Dong, B., . . . Li, X. (2020). Corrosion Behaviors of Carbon Steel and Ni-Advanced Weathering Steel Exposed to Tropical Marine Atmosphere. Journal of Materials Engineering and Performance, 29, 6417-6426
  11. Haiko, O., Kaijalainen, A., Pallaspuro, S., Hannula, J., Porter, D., Liimatainen, T., & Komi, J. (2019). The Effect of Tempering on the Microstructure and Mechanical Properties of a Novel 0.4C Press-Hardening Steel. Applied sciences, 4231
  12. International, A. (2004). Standard Specification for High-strength Low-alloy Structural Steel up to 50 ksi (345 MPa) Minimum Yield Point, with Atmospheric Corrosion Resistance. West Conshohocken: ASTM Internationa
  13. Jena, P. K., Kumar, K., & Singh, A. (2014). Effect of Tempering Temperature on Microstructure, Texture and Mechanical Properties of a High Strength Steel. International Journal of Manufacturing, Materials, and Mechanical Engineering, 33-49
  14. Jia, J. W. (2020). Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test. Construction and Building Materials, 245, 118463
  15. Krauss, G. (2014). Quench and Tempered Martensitic Steels. Comprehensive Materials Processing, 363–378
  16. Mandal, G., Ghosh, S., & Mukherjee, S. (2016). Phase transformation and mechanical behaviour of thermo-mechanically controlled processed high strength multiphase steel. Journal of Materials Science, 6569-6582
  17. Martin, H., Yirenkyi, P., Pohjonen, A., Frempong, N., Komi, J., & Mahesh, S. (2021). Statistical Modeling for Prediction of CCT Diagrams of Steels Involving Interaction of Alloying Elements. Metallurgical and Materials Transaction B, 223-235
  18. Morcillo, M. D. (2019). Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts. Construction and Building Materials, 213, 723–737
  19. Prasetyo, M. A., Anwar, M. S., Mabruri, E., Agustiningtyas, D. T., Noviana, R. C., & Laksono, A. D. (2020). Pengaruh Perlakuan Panas Baja Tahan Karat Martensitik AISI 410 terhadap Struktur Mikro dan Ketahanan Korosi di Lingkungan Geothermal dan Larutan Artificial Brine. Teknik, 179-185
  20. Singh, S. B. (2012). Mechanisms of bainite transformation in steels. In E. P. Edmonds, Phase Transformations in Steels (pp. 385–416.). Cambridge: Woodhead Publishing Limited
  21. Yue, W., Zili, L., Xiqin , L., Shoudong, Z., & Qingchao, T. (2015). Corrosion performance of high strength weathering steels under different heat treatment states. HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015. Hangzhou

Last update:

No citation recorded.

Last update: 2024-04-12 03:18:31

No citation recorded.