skip to main content

Experimental study of the Effect of the Blades of Number on Characteristics Pico Bulb Turbine on Horizontal Flow

Studi Eksperimental Pengaruh Jumlah Sudu terhadap Unjuk Kerja Pico Bulb Turbine Aliran Horisontal

*Dwi Aries Himawanto  -  Jurusan Teknik Mesin, Fakultas Teknik, Universitas Sebelas Maret, Indonesia
Akhmad Nurdin  -  Program Studi Teknologi Pengecoran Logam, Politeknik Manufaktur Ceper, Indonesia
Hasan Bisri  -  Jurusan Otomotif, SMKN 1 Sine Ngawi, Indonesia
Open Access Copyright (c) 2021 TEKNIK

Citation Format:
This study discusses the effect of the number of blades on a horizontal flow propeller turbine performance on a small scale experimentally. The development of small-scale water turbines has made many advances, including water turbines with the horizontal flow. Water turbines in horizontal flow can be applied to irrigation systems, piping systems, the wastewater treatment channel, and other closed channels. Pengukuran dynamic head pada aliran horisontal berdasarkan nilai pressure drop atau perbedaan tekanan sebelum dan sesudah turbin. Dynamic head measurement on the horizontal flow is based on pressure drop values or pressure before and after the turbine. Static bulbs placed before the turbine aim to increase the speed of water flow and potentially improve turbine performance. This study aims to determine the effect of the number of blades on the performance and efficiency of propeller turbines. The blade angle used is 200 with a bulb ratio of 0.6 to the pipe diameter. The variations in the number of blades used were 4, 5, 6, and 7, with each tested at 7 L / s, 9 L / s, 11 L / s, and 13 L / s. The results of this study indicate the number of blades 5 with a discharge of 13 L / s shows the best turbine performance compared to the number of other blades, besides that the number of blades 5 with a flow rate of 13 L / s shows the best efficiency value of around 40%.
Fulltext View|Download
Keywords: propeller; number of blades; dynamic head; bulb

Article Metrics:

  1. Aghamohammadi, N., Sulaiman, N. M. N., & Aroua, M. K. (2011). Combustion characteristics of biomass in SouthEast Asia. Biomass and bioenergy, 35(9), 3884-3890
  2. Alnakhlani, M. M., Mukhtar, D. A., Himawanto, A. A., & Danardono, D. (2015). Effect of the bucket and nozzle dimension on the performance of a pelton water turbine. Modern Applied Science, 9(1), 25-33
  3. Chen, Z., Kim, J. C., Im, M. H., & Choi, Y. D. (2014). Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system. Journal of the Korean Society of Marine Engineering, 38(10), 1244-1250
  4. Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., Mainil, A. K., & Nuramal, A. (2017). A review on micro hydropower in Indonesia. Energy Procedia, 110, 316-321
  5. Himawanto, D.A., Tjahjana, D. D. D. P., & Hantarum. (2017). Experimental Study on Optimization of Curvature Blade Impeller Pump as Turbine Which Functioned as Power Plant Picohydro. International Conference on Engineering, Science and Nanotechnology 2016 (ICESNANO 2016) 030008 (January)
  6. Kumar, Y., Ringenberg, J., Shekara, S., Devabhaktuni, V. K., Woo, J., Nikolaidis, E., Andersen, B. & Afjeh, A. (2016). Wind Energy : Trends and Enabling Technologies, 53: 209–24
  7. Kurniawan, R., Himawanto, D. A., & Widodo, P.J. (2019). The Performance of Numbers of Blade towards Picohydro Propeller Turbine. TICATE 2018, 3–8. IOP Conf. Series: Materials Science and Engineering, 508
  8. Nurdin, A. & Himawanto, D. A. (2018a). Review Aplikasi Bahan Bakar Biogas Pada Motor Bakar Si ( Spark Ignition ). Simetris, 9(2): 797–802
  9. Nurdin, A. & Himawanto, D.A. (2018b). Kajian Teoritis Uji Kerja Turbin Archimedes Screw pada Head Rendah. Simetris, 9(2): 783–96
  10. Nurdin, A., & Himawanto, D. A ( 2019). Studi Numerik Kekuatan Material Transmisi Roda Gigi Pico Hydro. JTMI 14(1): 24–29
  11. Nurdin, A. (2020). Studi eksperimental pengaruh jumlah sudu dan kemiringan sudu terhadap peforma tubular bulb turbin aliran horisontal. Tesis. Universitas Sebelas Maret, Surakarta
  12. Ramos, H.M., Simão, M., & Borga, A. (2013) Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. Journal of Energy Engineering, 139(2): 109–17
  13. Samora, I., Hasmatuchi, V., Münch-Alligné, C., Franca, M.J., Schleiss, A. J., & Ramos, H.M. (2016) Experimental Characterization of a Five Blade Tubular Propeller Turbine for Pipe Inline Installation. Renewable Energy, 95: 356–66
  14. Singh, P., & Nestmann, F . (2010). Exit Blade Geometry and Part-Load Performance of Small Axial Flow Propeller Turbines : An Experimental Investigation. Experimental Thermal and Fluid Science, 34(6): 798–811
  15. Singh, Punit, & Nestmann, F. (2011). Experimental Investigation of the in Fl Uence of Blade Height and Blade Number on the Performance of Low Head Axial Fl Ow Turbines. Renewable Energy 36(1): 272–81
  16. Zhu, L., H. P. Zhang, J. G. Zhang, X. C. Meng, & L. Lu. (2012). Performance of a Bulb Turbine Suitable for Low Prototype Head: Model Test and Transient Numerical Simulation. IOP Conference Series: Earth and Environmental Science 15 (PART 4)

Last update:

No citation recorded.

Last update: 2023-11-30 08:48:12

No citation recorded.