skip to main content

Kajian Komposit Berbasis Paduan Logam Magnesium Berpenguat Keramik untuk Aplikasi Ortopedi

Franciska Pramuji Lestari orcid  -  Pusat Riset Metalurgi - Badan Riset dan Inovasi Nasional (BRIN), Indonesia
Ika Kartika  -  Pusat Riset Metalurgi – Badan Riset dan Inovasi Nasional (BRIN), Indonesia
Ariadne Lakshmidevi Juwono  -  Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Indonesia
*Anawati Anawati  -  Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Indonesia, Indonesia
Open Access Copyright (c) 2022 TEKNIK

Citation Format:
Abstract
Komposit berbasis logam Magnesium (Mg) merupakan material maju yang potensial diaplikasikan untuk implan biodegradabel yang bersifat sementara. Mg memiliki sifat biodegradabel, biokompatibel serta memiliki densitas yang mendekati tulang sehingga dapat mengurangi stress shielding antara tulang dan implan. Namun, Mg memiliki laju degradasi yang relatif cepat yang dapat menurunkan sifat mekaniknya di dalam lingkungan fisiologis dan kurangnya sifat bioaktivitas. Di sisi lain, biokeramik yang kerap digunakan sebagai bahan implan tulang dan gigi bersifat bioaktif dan bioinert. Penggabungan Mg dan keramik dapat menjadi sebuah material komposit untuk aplikasi biomedis dengan peningkatan sifat mekanik dan biokompatibilitas serta laju degradasi yang imbang. Dalam kajian ini, dibahas secara komprehensif kemajuan riset material komposit berbasis Mg dengan paduan logam Mg sebagai matriks, berbagai material keramik yang umum digunakan sebagai penguat, fasa-fasa penguatan pada komposit, proses manufaktur serta perlakuan panas pada komposit berbasis magesium. Komposit berbasis Mg menjadi material yang menjanjikan untuk aplikasi biomedis karena kombinasi sifat mekanik yang baik, berat jenis yang rendah, dan kemungkinan untuk mencapai laju korosi yang lebih lambat serta meningkatkan penyembuhan dengan adanya material bioaktif.
Fulltext View|Download
Keywords: magnesium, Mg; implan; komposit; keramik; biomaterial

Article Metrics:

  1. Achparaki, Maria, Elisavet Thessalonikeos, Heleni Tsoukali, Orthodoxia Mastrogianni, Eleni Zaggelidou, Fotios Chatzinikolaou, Nikolaos Vasilliades, Nikolaos Raikos, Moses Isabirye, D. V. .. Raju, M. Kitutu, V. Yemeline, J. Deckers, and J. Poesen Additional. (2012). Magnesium Metal Matrix Composites and Their Applications. Intech 13
  2. Alhaji Ibrahim, Musa, Yusuf Sahin, Auwalu Yusuf Gidado, and MT Said. (2019) Mechanical Properties of Aluminium Matrix Composite Including SiC/Al 2 O 3 by Powder Metallurgy-A Review. Global Scientific Journal 7(3):23–38
  3. Ali, M. (2020). Review of stir casting technique and technical challenges for ceramic reinforcement particulate and aluminium matrix composites. Epitoanyag-Journal of Silicate Based & Composite Materials, 72(6).
  4. Ali, M., Hussein, M. A., & Al-Aqeeli, N. (2019). Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties. Journal of Alloys and Compounds, 792, 1162-1190.
  5. Amukarimi, S., & Mozafari, M. (2022). Biodegradable Magnesium Biomaterials—Road to the Clinic. Bioengineering, 9(3), 107
  6. Annur, D., Erryani, A., Amal, M. I., Sitorus, L. S., & Kartika, I. (2016, April). The synthesis and characterization of Mg-Zn-Ca alloy by powder metallurgy process. In AIP Conference Proceedings. Vol. 1725, No. 1, p. 020032). AIP Publishing LLC
  7. Fontanella, J., Andeen, C., & Schuele, D. (1974). Low‐frequency dielectric constants of α‐quartz, sapphire, MgF2, and MgO. Journal of Applied Physics, 45(7), 2852-2854
  8. Asgharzadeh, H., Yoon, E. Y., Chae, H. J., Kim, T. S., Lee, J. W., & Kim, H. S. (2014). Microstructure and mechanical properties of a Mg–Zn–Y alloy produced by a powder metallurgy route. Journal of alloys and compounds, 586, S95-S100
  9. Atrens, A., Liu, M., & Abidin, N. I. Z. (2011). Corrosion mechanism applicable to biodegradable magnesium implants. Materials Science and Engineering: B, 176(20), 1609-1636.
  10. Atrens, A., Shi, Z., Mehreen, S. U., Johnston, S., Song, G. L., Chen, X., & Pan, F. (2020). Review of Mg alloy corrosion rates. Journal of Magnesium and Alloys, 8(4), 989-998
  11. Atrens, A., Song, G. L., Liu, M., Shi, Z., Cao, F., & Dargusch, M. S. (2015). Review of recent developments in the field of magnesium corrosion. Advanced Engineering Materials, 17(4), 400-453
  12. Avedesian, M. M., & Baker, H. (Eds.). (1999). ASM specialty handbook: magnesium and magnesium alloys. ASM international
  13. Ben-Hamu, G., Eliezer, D., & Shin, K. S. (2008). The role of Mg2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy. Intermetallics, 16(7), 860-867
  14. Ben-Hamu, G., Eliezer, D., Shin, K. S., & Cohen, S. (2007). The relation between microstructure and corrosion behavior of Mg–Y–RE–Zr alloys. Journal of Alloys and Compounds, 431(1-2), 269-276
  15. Birbilis, N., & Buchheit, R. G. (2005). Electrochemical characteristics of intermetallic phases in aluminum alloys: an experimental survey and discussion. Journal of the Electrochemical Society, 152(4), B140
  16. Kannan, M. B., & Raman, R. S. (2008). Evaluating the stress corrosion cracking susceptibility of Mg–Al–Zn alloy in modified-simulated body fluid for orthopaedic implant application. Scripta Materialia, 59(2), 175-178
  17. Bommala, V. K., Krishna, M. G., & Rao, C. T. (2019). Magnesium matrix composites for biomedical applications: A review. Journal of Magnesium and Alloys, 7(1), 72-79
  18. Brar, H. S., Platt, M. O., Sarntinoranont, M., Martin, P. I., & Manuel, M. V. (2009). Magnesium as a biodegradable and bioabsorbable material for medical implants. Jom, 61(9), 31-34
  19. Cain, T., Bland, L. G., Birbilis, N., & Scully, J. R. (2014). A compilation of corrosion potentials for magnesium alloys. Corrosion, 70(10), 1043-1051
  20. Chen, K., Dai, J., & Zhang, X. (2015). Improvement of corrosion resistance of magnesium alloys for biomedical applications. Corrosion Reviews, 33(3-4), 101-117
  21. Cheng, J., Liu, B., Wu, Y. H., & Zheng, Y. F. (2013). Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. Journal of Materials Science & Technology, 29(7), 619-627
  22. Cui, Z., Li, W., Cheng, L., Gong, D., Cheng, W., & Wang, W. (2019). Effect of nano-HA content on the mechanical properties, degradation and biocompatible behavior of Mg-Zn/HA composite prepared by spark plasma sintering. Materials Characterization, 151, 620-631
  23. Cáceres, C. H., & Blake, A. (2002). The strength of concentrated Mg–Zn solid solutions. physica status solidi (a), 194(1), 147-158
  24. Dinodi, N., & Shetty, A. N. (2013). Electrochemical investigations on the corrosion behaviour of magnesium alloy ZE41 in a combined medium of chloride and sulphate. Journal of Magnesium and Alloys, 1(3), 201-209.
  25. Du, Y., Wu, Y., Peng, L., Chen, J., Zeng, X., & Ding, W. (2016). Formation of lamellar phase with 18R-type LPSO structure in an as-cast Mg96Gd3Zn1 (at%) alloy. Materials Letters, 169, 168-171
  26. Dutta, S., Devi, K. B., Gupta, S., Kundu, B., Balla, V. K., & Roy, M. (2019). Mechanical and in vitro degradation behavior of magnesium‐bioactive glass composites prepared by SPS for biomedical applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(2), 352-365
  27. Dutta, S., Devi, K. B., Mandal, S., Mahato, A., Gupta, S., Kundu, B., ... & Roy, M. (2019). In vitro corrosion and cytocompatibility studies of hot press sintered magnesium-bioactive glass composite. Materialia, 5, 100245.
  28. Edori, O. S., & Marcus, A. C. (2017). Phytochemical screening and physiologic functions of metals in seed and peel of Citrullus lanatus (Watermelon). International Journal of Green and Herbal Chemistry, B, 6(1), 35-46.
  29. Esmaily, M., Svensson, J. E., Fajardo, S., Birbilis, N., Frankel, G. S., Virtanen, S., ... & Johansson, L. G. (2017). Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 89, 92-193.
  30. Feng, A., & Han, Y. (2011). Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites. Materials & Design, 32(5), 2813-2820
  31. Franciska P. Lestari; Ardi Tri; Dhyah Annur; I Nyoman Gede P.; Syaiful Anwar; Ika Kartika. 2015. “Studi Penambahan Unsur Ca Pada Paduan Binner Mg-Ca Terhadap Pembentukkan Fasa Dan Korosi In-Vitro Untuk Aplikasi Implan Mampu Luruh.” Majalah Metalurgi 2:63–70
  32. Fulmer, M. T., Ison, I. C., Hankermayer, C. R., Constantz, B. R., & Ross, J. (2002). Measurements of the solubilities and dissolution rates of several hydroxyapatites. Biomaterials, 23(3), 751-755
  33. Ghasali, E., Alizadeh, M., & Ebadzadeh, T. (2018). TiO2 ceramic particles-reinforced aluminum matrix composite prepared by conventional, microwave, and spark plasma sintering. Journal of Composite Materials, 52(19), 2609-2619
  34. Gietzelt, T., Toth, V., & Huell, A. (2016). Diffusion bonding: influence of process parameters and material microstructure. Joining Technologies, 195-216
  35. Goh, C. S., Gupta, M., Wei, J., & Lee, L. C. (2007). Characterization of high performance Mg/MgO nanocomposites. Journal of composite materials, 41(19), 2325-2335
  36. Gu, X., Zheng, Y., Cheng, Y., Zhong, S., & Xi, T. (2009). In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 30(4), 484-498
  37. Guang, By, Ling Song, and Andrej Atrens. (2000). Corrosion Mechanisms of Magnesium Alloys. (1):11–33
  38. Gupta, Manoj. (2013). Enhancing the Ductility of Mg-(5.6Ti+3Al) Composite Using Nano-B4C Addition and Heat Treatment. SOJ Materials Science & Engineering 1(1):3–8. doi: 10.15226/sojmse.2013.00103
  39. Haferkamp, H., Bach, F. W., Kaese, V., Möhwald, K., Niemeyer, M., Schreckenberger, H., & Tai, P. T. (2003). Magnesium Corrosion–Processes, Protection of Anode and Cathode. Magnesium–Alloys and Technology, 226-241
  40. Hagihara, K., Kinoshita, A., Fukusumi, Y., Yamasaki, M., & Kawamura, Y. (2013). High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Materials Science and Engineering: A, 560, 71-79
  41. Hamadouche, M., & Sedel, L. (2000). Ceramics in orthopaedics. The Journal of Bone and Joint Surgery. British volume, 82(8), 1095-1099
  42. Hänzi, A. C., Gerber, I., Schinhammer, M., Löffler, J. F., & Uggowitzer, P. J. (2010). On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta biomaterialia, 6(5), 1824-1833
  43. Huff-Lonergan, E. (2010). Chemistry and biochemistry of meat. Handbook of meat processing, 24:3–24. doi: 10.1002/9780813820897.ch1
  44. Huzum, B., Puha, B., Necoara, R. M., Gheorghevici, S., Puha, G., Filip, A., ... & Alexa, O. (2021). Biocompatibility assessment of biomaterials used in orthopedic devices: An overview. Experimental and Therapeutic Medicine, 22(5), 1-9
  45. Ivanova, Nadezhda, Viliana Gugleva, Mirena Dobreva, Ivaylo Pehlivanov, Stefan Stefanov, and Velichka Andonova. 2016. “Mg-Based Composites for Biomedical Applications.” Intech i(tourism):13
  46. Jacobs, J. J., Hallab, N. J., Skipor, A. K., & Urban, R. M. (2003). Metal degradation products: a cause for concern in metal-metal bearings?. Clinical Orthopaedics and Related Research (1976-2007), 417, 139-147
  47. Jiang, Q., Lu, D., Liu, C., Liu, N., & Hou, B. (2021). The Pilling-Bedworth ratio of oxides formed from the precipitated phases in magnesium alloys. Frontiers in Materials, 457.
  48. Kamrani, S., & Fleck, C. (2019). Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals, 32(2), 185-193
  49. Kappes, M., Iannuzzi, M., & Carranza, R. M. (2013). Hydrogen embrittlement of magnesium and magnesium alloys: a review. Journal of The Electrochemical Society, 160(4), C168
  50. Khanra, A. K., Jung, H. C., Hong, K. S., & Shin, K. S. (2010). Comparative property study on extruded Mg–HAP and ZM61–HAP composites. Materials Science and Engineering: A, 527(23), 6283-6288
  51. Kirkland, N. T., Birbilis, N., Walker, J., Woodfield, T., Dias, G. J., & Staiger, M. P. (2010). In‐vitro dissolution of magnesium–calcium binary alloys: Clarifying the unique role of calcium additions in bioresorbable magnesium implant alloys. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 95(1), 91-100
  52. Kirkland, N. T., Staiger, M. P., Nisbet, D., Davies, C. H., & Birbilis, N. (2011). Performance-driven design of Biocompatible Mg alloys. Jom, 63(6), 28-34
  53. Koltygin, A. V., Bazhenov, V. E., Khasenova, R. S., Komissarov, A. A., Bazlov, A. I., & Bautin, V. A. (2019). Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. International Journal of Minerals, Metallurgy, and Materials, 26(7), 858-868.
  54. Kraus, T., Fischerauer, S. F., Hänzi, A. C., Uggowitzer, P. J., Löffler, J. F., & Weinberg, A. M. (2012). Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta biomaterialia, 8(3), 1230-1238
  55. Kumar, D. (2020). Bio-mechanical characterization of Mg-composite implant developed by spark plasma sintering technique. Materials Today: Proceedings. Materials Today: Proceedings (xxxx):2–7. doi: 10.1016/j.matpr.2020.06.387
  56. Kumar, K., Das, A., & Prasad, S. B. (2021). Recent developments in biodegradable magnesium matrix composites for orthopaedic applications: A review based on biodegradability, mechanical and biocompatibility perspective. Materials Today: Proceedings, 44, 2038-2042
  57. Kumar, S., Gautam, C., Chauhan, B. S., Srikrishna, S., Yadav, R. S., & Rai, S. B. (2020). Enhanced mechanical properties and hydrophilic behavior of magnesium oxide added hydroxyapatite nanocomposite: A bone substitute material for load bearing applications. Ceramics International, 46(10), 16235-16248.
  58. Kuśnierczyk, K., & Basista, M. (2017). Recent advances in research on magnesium alloys and magnesium–calcium phosphate composites as biodegradable implant materials. Journal of biomaterials applications, 31(6), 878-900
  59. Kwon, S. H., Jun, Y. K., Hong, S. H., & Kim, H. E. (2003). Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. Journal of the European Ceramic Society, 23(7), 1039-1045
  60. Latour, Robert A., Sharon D. Trembley, Yuan Tian, Gary C. Lickfield, and A. P. Wheeler. 2001. “Tissue-Engineered Growth of Bone by Marrow Cell Transplantation Using Porous Calcium Metaphosphate Matrices.” Journal of Biomedical Materials Research 54(2):216–23
  61. Lee, J. Y., Kim, D. H., Lim, H. K., & Kim, D. H. (2005). Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys. Materials Letters, 59(29-30), 3801-3805
  62. Lei, T., Ouyang, C., Tang, W., Li, L. F., & Zhou, L. S. (2010). Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process. Corrosion science, 52(10), 3504-3508
  63. Lin, G., Liu, D., Chen, M., You, C., Li, Z., Wang, Y., & Li, W. (2018). Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications. Materials Characterization, 144, 120-130
  64. Lu, Y., Bradshaw, A. R., Chiu, Y. L., & Jones, I. P. (2015). Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Materials Science and Engineering: C, 48, 480-486
  65. Mala, R., & Ruby Celsia, A. S. (2018). Bioceramics in orthopaedics: A review. Fundamental Biomaterials: Ceramics, 195-221
  66. Mróz, W., Budner, B., Syroka, R., Niedzielski, K., Golański, G., Slósarczyk, A., ... & Douglas, T. E. (2015). In vivo implantation of porous titanium alloy implants coated with magnesium‐doped octacalcium phosphate and hydroxyapatite thin films using pulsed laser depostion. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(1), 151-158
  67. Mukhin, I., Perevezentsev, E., & Palashov, O. (2014). Fabrication of composite laser elements by a new thermal diffusion bonding method. Optical Materials Express, 4(2), 266-271
  68. Munir, K., Biesiekierski, A., Wen, C., & Li, Y. (2020). Powder metallurgy in manufacturing of medical devices. In Metallic Biomaterials Processing and Medical Device Manufacturing (pp. 159-190). Woodhead Publishing
  69. Munir, K., Lin, J., Wen, C., Wright, P. F., & Li, Y. (2020). Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications. Acta biomaterialia, 102, 493-507
  70. Nam, S. W., Kim, W. T., Kim, D. H., & Kim, T. S. (2013). Microstructure and corrosion behavior of rapidly solidified Mg-Zn-Y alloys. Metals and Materials International, 19(2), 205-209
  71. Navazani, M., & Dehghani, K. (2016). Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. Journal of Materials Processing Technology, 229, 439-449
  72. Nie, J. F., Zhu, Y. M., & Morton, A. J. (2014). On the structure, transformation and deformation of long-period stacking ordered phases in Mg-Y-Zn alloys. Metallurgical and Materials Transactions A, 45(8), 3338-3348
  73. Ohno, M., & Schmid-Fetzer, R. (2006). Mg-rich phase equilibria of Mg–Mn–Zn alloys analyzed by computational thermochemistry. International journal of materials research, 97(5), 526-532
  74. op't Hoog, C., Birbilis, N., & Estrin, Y. (2008). Corrosion of pure Mg as a function of grain size and processing route. Advanced Engineering Materials, 10(6), 579-582
  75. Pahade, V. S., Chavan, P. S., & Baisane, V. P. (2016). A review paper on vapour deposition coating. International Journal of Engineering and Applied Sciences, 3(6), 257640
  76. Pakdel, A., Witecka, A., Rydzek, G., & Shri, D. N. A. (2017). A comprehensive microstructural analysis of Al–WC micro-and nano-composites prepared by spark plasma sintering. Materials & Design, 119, 225-234
  77. Pereira, D., Cachinho, S., Ferro, M. C., & Fernandes, M. H. V. (2004). Surface behaviour of high MgO-containing glasses of the Si–Ca–P–Mg system in a synthetic physiological fluid. Journal of the European Ceramic Society, 24(15-16), 3693-3701
  78. Pietak, A., Mahoney, P., Dias, G. J., & Staiger, M. P. (2008). Bone-like matrix formation on magnesium and magnesium alloys. Journal of materials science: materials in medicine, 19(1), 407-415
  79. Qiao, K., Zhang, T., Wang, K., Yuan, S., Zhang, S., Wang, L., ... & Wang, W. (2021). Mg/ZrO2 metal matrix nanocomposites fabricated by friction stir processing: microstructure, mechanical properties, and corrosion behavior. Frontiers in Bioengineering and Biotechnology, 9, 605171
  80. Qiu, K., Wan, C. X., Zhao, C. S., Chen, X., Tang, C. W., & Chen, Y. W. (2006). Fabrication and characterization of porous calcium polyphosphate scaffolds. Journal of materials science, 41(8), 2429-2434
  81. Radha, R., & Sreekanth, D. (2017). Insight of magnesium alloys and composites for orthopedic implant applications–a review. Journal of magnesium and alloys, 5(3), 286-312
  82. Reyes, A., Bedolla, E., Perez, R., & Contreras, A. (2017). Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Composite Interfaces, 24(6), 593-609
  83. Rosalbino, F., De Negri, S., Saccone, A., Angelini, E., & Delfino, S. (2010). Bio-corrosion characterization of Mg–Zn–X (X= Ca, Mn, Si) alloys for biomedical applications. Journal of Materials Science: Materials in Medicine, 21(4), 1091-1098
  84. Rosalbino, F., De Negri, S., Scavino, G., & Saccone, A. (2013). Microstructure and in vitro degradation performance of Mg–Zn–Mn alloys for biomedical application. Journal of biomedical materials research Part A, 101(3), 704-711
  85. Ryu, H. S., Hong, K. S., Lee, J. K., Kim, D. J., Lee, J. H., Chang, B. S., ... & Chung, S. S. (2004). Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 25(3), 393-401
  86. Saheb, N., Iqbal, Z., Khalil, A., Hakeem, A. S., Al Aqeeli, N., Laoui, T., ... & Kirchner, R. (2012). Spark plasma sintering of metals and metal matrix nanocomposites: a review. Journal of Nanomaterials, 2012
  87. Sezer, N., Evis, Z., Kayhan, S. M., Tahmasebifar, A., & Koç, M. (2018). Review of magnesium-based biomaterials and their applications. Journal of magnesium and alloys, 6(1), 23-43
  88. Shahin, M., Munir, K., Wen, C., & Li, Y. (2019). Magnesium matrix nanocomposites for orthopedic applications: a review from mechanical, corrosion, and biological perspectives. Acta biomaterialia, 96, 1-19
  89. Shaw, B. A. (2003). Corrosion resistance of magnesium alloys. ASM handbook, 13, 692-696
  90. Shuai, C., Zhou, Y., Yang, Y., Feng, P., Liu, L., He, C., ... & Wu, P. (2017). Biodegradation resistance and bioactivity of hydroxyapatite enhanced Mg-Zn composites via selective laser melting. Materials, 10(3), 307
  91. Siadkowska, K., & Czyż, Z. (2019). Selecting a material for an aircraft diesel engine block. Combustion Engines, 58
  92. Singh, A., & Harimkar, S. P. (2012). Laser surface engineering of magnesium alloys: a review. Jom, 64(6), 716-733
  93. Song, G., Atrens, A., St John, D., Wu, X., & Nairn, J. (1997). The anodic dissolution of magnesium in chloride and sulphate solutions. Corrosion science, 39(10-11), 1981-2004
  94. Song, G. L. (2011). Corrosion electrochemistry of magnesium (Mg) and its alloys. In Corrosion of Magnesium alloys (pp. 3-65). Woodhead Publishing
  95. Song, G. L., & Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1(1), 11-33
  96. Song, G. (2007). Control of biodegradation of biocompatable magnesium alloys. Corrosion science, 49(4), 1696-1701
  97. Song, G. (2007). Control of biodegradation of biocompatable magnesium alloys. Corrosion science, 49(4), 1696-1701
  98. Song, Y. W., Shan, D. Y., & Han, E. H. (2008). Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials letters, 62(17-18), 3276-3279
  99. Song, Y., Han, E. H., Shan, D., Yim, C. D., & You, B. S. (2012). The effect of Zn concentration on the corrosion behavior of Mg–xZn alloys. Corrosion science, 65, 322-330
  100. Sree Manu, K. M., Ajay Raag, L., Rajan, T. P. D., Gupta, M., & Pai, B. C. (2016). Liquid metal infiltration processing of metallic composites: a critical review. Metallurgical and Materials Transactions B, 47(5), 2799-2819
  101. Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27(9), 1728-1734
  102. Sun, D. (2004). On the corrosion behavior and biocompatibility of palladium-based dental alloys. The Ohio State University
  103. Sun, J. E., Chen, M., Cao, G., Bi, Y., Liu, D., & Wei, J. (2014). The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5 Zr alloy. Journal of Composite Materials, 48(7), 825-834
  104. Tib, Ti, and Na K. Nbo. 2010. Spark Plasma Sintering Enhancing Grain Sliding , Deformation and Grain Size Control Doctoral Thesis 2010
  105. Tie, D., Feyerabend, F., Hort, N., Hoeche, D., Kainer, K. U., Willumeit, R., & Mueller, W. D. (2014). In vitro mechanical and corrosion properties of biodegradable Mg–Ag alloys. Materials and corrosion, 65(6), 569-576
  106. Tsai, A. P., Murakami, Y., & Niikura, A. (2000). The Zn-Mg-Y phase diagram involving quasicrystals. Philosophical Magazine A, 80(5), 1043-1054
  107. Umm-e-Farwa, Khuram Shahzad Ahmad, Zakir Hussain, and Sara Majid. 2018. “Synthesis, Characterization and PVD Assisted Thin Film Fabrication of the Nano-Structured Bimetallic Ni3S2/MnS2 Composite.” Surfaces and Interfaces 12:190–95. doi: 10.1016/j.surfin.2018.06.003
  108. Vaira Vignesh, R., Padmanaban, R., Govindaraju, M., & Suganya, P. G. (2019). Investigations on the corrosion behaviour and biocompatibility of magnesium alloy surface composites AZ91D-ZrO2 fabricated by friction stir processing. Transactions of the IMF, 97(5), 261-270
  109. Witte, F. (2010). The history of biodegradable magnesium implants: a review. Acta biomaterialia, 6(5), 1680-1692
  110. Wu, D., Chen, R. S., & Ke, W. (2014). Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy. Materials & Design, 58, 324-331
  111. Xia, X. J., Davies, C. H. J., Nie, J. F., & Birbilis, N. (2015). Influence of composition and processing on the corrosion of magnesium alloys containing binary and ternary additions of zinc and strontium. Corrosion, 71(1), 38-49
  112. Xiuqing, Z., Lihua, L., Naiheng, M., & Haowei, W. (2006). Effect of aging hardening on in situ synthesis magnesium matrix composites. Materials chemistry and physics, 96(1), 9-15
  113. Xu, C., Zhang, J., Liu, S., Jing, Y., Jiao, Y., Xu, L., ... & Wu, R. (2015). Microstructure, mechanical and damping properties of Mg–Er–Gd–Zn alloy reinforced with stacking faults. Materials & Design, 79, 53-59
  114. Ye, H. Z., & Liu, X. Y. (2004). Review of recent studies in magnesium matrix composites. Journal of materials science, 39(20), 6153-6171
  115. Yin, P., Li, N. F., Lei, T., Liu, L., & Ouyang, C. (2013). Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine, 24(6), 1365-1373
  116. Yu, K., Chen, L., Zhao, J., Li, S., Dai, Y., Huang, Q., & Yu, Z. (2012). In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3 (PO4) 2/Mg–Zn composites. Acta biomaterialia, 8(7), 2845-2855
  117. Abidin, N. I. Z., Atrens, A. D., Martin, D., & Atrens, A. (2011). Corrosion of high purity Mg, Mg2Zn0. 2Mn, ZE41 and AZ91 in Hank’s solution at 37 C. Corrosion Science, 53(11), 3542-3556.
  118. Zeng, R. C., Yin, Z. Z., Chen, X. B., & Xu, D. K. (2018). Corrosion types of magnesium alloys. Magnesium Alloys-Selected Issue, 29-53
  119. Zeng, R., Dietzel, W., Witte, F., Hort, N., & Blawert, C. (2008). Progress and challenge for magnesium alloys as biomaterials. Advanced engineering materials, 10(8), B3-B14
  120. Zhang, B. P., Wang, Y., & Geng, L. (2011). Research on Mg-Zn-Ca alloy as degradable biomaterial. Biomaterials-Physics and Chemistry. InTech, Croatia
  121. Zhang, E., He, W., Du, H., & Yang, K. (2008). Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Materials Science and Engineering: A, 488(1-2), 102-111
  122. Zhao, M. C., Liu, M., Song, G., & Atrens, A. (2008). Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91. Corrosion Science, 50(7), 1939-1953
  123. Zheng, H. R., Li, Z., You, C., Liu, D. B., & Chen, M. F. (2017). Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites. Bioactive materials, 2(1), 1-9
  124. Zheng, M. Y., Wu, K., Kamado, S., & Kojima, Y. (2003). Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Materials Science and Engineering: A, 348(1-2), 67-75
  125. Zhu, Y. M., Morton, A. J., & Nie, J. F. (2010). The 18R and 14H long-period stacking ordered structures in Mg–Y–Zn alloys. Acta Materialia, 58(8), 2936-2947

Last update:

No citation recorded.

Last update: 2024-12-25 18:58:07

No citation recorded.