skip to main content

Penggunaan Flight Data Logger untuk Menganalisis Dampak Modifikasi Seaplane pada Kinerja Take Off Cessna PK-APH: Studi Komparasi

Muhammad Nur Cahyo Hidayat Nasrullah  -  Indonesia Civil Pilot Academy of Banyuwangi, Indonesia
Gatut Rubiono  -  Departemen Teknik Mesin, Fakultas Teknik, Universitas PGRI Banyuwangi, Indonesia
Sabam Danny Sulung  -  Akademi Penerbang Indonesia Banyuwangi, Indonesia
*Hadi Prayitno  -  Akademi Penerbang Indonesia Banyuwangi, Indonesia
Open Access Copyright (c) 2024 TEKNIK

Citation Format:
Abstract

Penelitian ini dilakukan untuk membandingkan take off performance antara pesawat yang telah dimodifikasi menjadi pesawat seaplane (amfibi) dan pesawat Cessna standar sebelum dimodifikasi. Komparasi dilakukan menggunakan data dari flight data recorder Garmin G1000 dengan flight data logger. Data yang dipilih adalah berdasarkan pada satu pesawat yang sama, yakni dengan registrasi PK-APH, namun data difilterisasi dengan berbagai kondisi. Tujuan penelitian ini adalah untuk mengetahui dampak yang ditimbulkan oleh modifikasi seaplane (amfibi) yang telah dilakukan dari segi fase climbing, perbandingan ground roll, maksimal ground speed serta maksimal airspeed. Analisis menunjukkan perbedaan signifikan antara pesawat sebelum dan setelah dimodifikasi menjadi pesawat seaplane. Sebelum modifikasi, pesawat mencapai ketinggian 478,4 kaki diatas permukaan laut dalam 60 detik setelah lepas landas, sedangkan setelah modifikasi hanya mencapai 355,7 kaki di atas permukaan laut. Ground speed pada detik ke-20 juga berbeda, dengan pesawat sebelum modifikasi mencapai 60,69 knots dan pesawat seaplane hanya mencapai 48,65 knots. Perbedaan terlihat pada airspeed awal saat take-off, di mana pesawat sebelum modifikasi memiliki angka 71 knots pada detik ke-24, sedangkan pesawat seaplane memiliki angka 66 knots.

Fulltext View|Download
Keywords: take off performance; amphibious seaplane; Cessna 172S; flight data recorder; aircraft
Funding: Akademi Penerbang Indonesia Banyuwangi

Article Metrics:

  1. Ashrafee, F., Morsalin, S., & Rezwan, A. (2014). Design and fabrication of a solar powered toy car. 2014 International Conference on Electrical Engineering and Information & Communication Technology, 1–6. https://doi.org/10.1109/ICEEICT.2014.6919041
  2. Calle-Alonso, F., Pérez, C. J., & Ayra, E. S. (2019). A Bayesian-Network-based Approach to Risk Analysis in Runway Excursions. Journal of Navigation, 72(5), 1121–1139. https://doi.org/10.1017/S0373463319000109
  3. Comer, A. M., Swartz, S., & Chakraborty, I. (2020, June 15). Data-Driven General Aviation Aircraft Performance Modeling and Safety Research. AIAA AVIATION 2020 FORUM. https://doi.org/10.2514/6.2020-3097
  4. Connor, A. O., & Kearney, D. (2018). Evaluate the effect of turbulence on aircraft during landing and take-off phases. International Journal of Aviation, Aeronautics, and Aerospace, 5(4), 0–15. https://doi.org/10.15394/ijaaa.2018.1284
  5. Czyż, Z., Karpiński, P., Gęca, M., & Diaz, J. (2018). The Air Flow Influence on The Drag Force of a Sports Car. Advances in Science and Technology Research Journal, 12(2), 121–127. https://doi.org/10.12913/22998624/86213
  6. Damayanti, L., & Widianty, D. (2020). Evaluasi Panjang dan Arah Landas Pacu Di Bandar Udara Sultan Muhammad Kaharuddin Sumbawa. Spektrum Sipil, 7(1), 21–32
  7. Deeb, R. (2021). Experimental and numerical investigation of the effect of angle of attack on air flow characteristics around drop-shaped tube. Physics of Fluids, 33(6). https://doi.org/10.1063/5.0053040
  8. Dlugiewicz, P., & Markowski, J. (2019). Analysis of operational parameters of the Cirrus SR22T aircraft for identification of deviations from standard operating procedures. Transportation Research Procedia, 40, 1297–1304. https://doi.org/10.1016/j.trpro.2019.07.180
  9. Fadholi, A. (2013). Studi Pengaruh Suhu dan Tekanan Udara Terhadap Daya Angkat Pesawat Di Bandara Sultan Babullah Ternate (1981-2008). Forum Ilmiah, 10(1), 90–97
  10. Faiyetole, A. A., & Toyin, I. T. (2019). Predicting the aircraft take-off noise level. Vibroengineering Procedia, 22(March 2019), 129–134. https://doi.org/10.21595/vp.2019.20588
  11. Gagliardi, P., Teti, L., & Licitra, G. (2018). A statistical evaluation on flight operational characteristics affecting aircraft noise during take-off. Applied Acoustics, 134, 8–15. https://doi.org/10.1016/j.apacoust.2017.12.024
  12. García, A. H., & Quintero, E. M. (2011). Strategy for attending takeoffs and landings to reduce the aircraft operating costs and the passenger delays. European Journal of Transport and Infrastructure Research, 11(2), 219–233. https://doi.org/10.18757/ejtir.2011.11.2.2923
  13. Garmin Ltd. (2011). Integrated Flight Deck Cockpit Reference Guide Cessna Nav III: Vol. Rev. A
  14. Gemba, K. L. (2007). Shape effects on drag. https://www.researchgate.net/publication/330684511
  15. Golubev, A. E., Botkin, N. D., & Krishchenko, A. P. (2019). Backstepping control of aircraft take-off in windshear. IFAC-PapersOnLine, 52(16), 712–717. https://doi.org/10.1016/j.ifacol.2019.12.046
  16. Jiang, R., Wu, B., Zhang, K., & Li, C. (2018). Experimental study on the effect of landing gear fairing on amphibious aircraft. 2018 IEEE 8th International Conference on Underwater System Technology: Theory and Applications (USYS), 1–4. https://doi.org/10.1109/USYS.2018.8779217
  17. K, A. H., Suyatno, A., & Rahayu, J. (2011). Simulasi Pendaratan Pesawat Terbang Jenis Cassa 212 Menggunakan Logika Fuzzy. Jurnal EKSPONENSIAL, 2(1), 1–10
  18. Kobayashi, T., Bowen, B. D., Roggow, B. J., Kobayashi, T., Bowen, B. D., & Roggow, B. (2019a). Flight Data Analysis: A Mixed Methodology Construct
  19. Kobayashi, T., Bowen, B. D., Roggow, B. J., Kobayashi, T., Bowen, B. D., & Roggow, B. (2019b). Flight Data Analysis: A Mixed Methodology Construct. https://commons.erau.edu/cgi/viewcontent.cgi?article=1147&context=student-works
  20. Kwasiborska, A., & Stelmach, A. (2013). Identification and Analysis Take-Off Aircraft Operations. Journal of KONES. Powertrain and Transport, 20(4), 201–208. https://doi.org/10.5604/12314005.1137617
  21. Li, X., & Chen, X. (2018). Research on Aviation Hub from Perspective of Flight Take-off and Landing Waveforms. IOP Conference Series: Earth and Environmental Science, 189(6), 1–6. https://doi.org/10.1088/1755-1315/189/6/062018
  22. Majka, A., Ground, I., & Control, M. (2014). Aircraft take-off and landing with ground-based power. Logistyka, 6(2014), 6999–7006
  23. Masri, J., Dala, L., & Huard, B. (2019). A review of the analytical methods used for seaplanes’ performance prediction. Aircraft Engineering and Aerospace Technology, 91(6), 820–833. https://doi.org/10.1108/AEAT-07-2018-0186
  24. Melnichuk, A. V., Nesterov, V. A., Sudakov, V. A., & Sypalo, K. I. (2021). Production expert system to determine aircraft take-off and landing performance. IOP Conference Series: Materials Science and Engineering, 1027(1), 1–3. https://doi.org/10.1088/1757-899X/1027/1/012018
  25. P. Liem, R. (2018). Review of Design Aspects and Challenges of Efficient and Quiet Amphibious Aircraft. Journal of Physics: Conference Series, 1005, 012027. https://doi.org/10.1088/1742-6596/1005/1/012027
  26. Pakan, W. (2019). Faktor Penyebab Kecelakaan Penerbangan Di Landas Pacu. Warta Penelitian Perhubungan, 26(3), 169–176. https://doi.org/10.25104/warlit.v26i3.879
  27. Pitcher, S. E. (2022). Analysis of Unmanned Aircraft Systems Sightings Reports: Determination of Factors Leading to High Sighting Reports. Unmanned Systems, 10(03), 205–239. https://doi.org/10.1142/S2301385022500121
  28. Qiu, L., & Song, W. (2016). Efficient Multiobjective Optimization of Amphibious Aircraft Fuselage Steps with Decoupled Hydrodynamic and Aerodynamic Analysis Models. Journal of Aerospace Engineering, 29(3). https://doi.org/10.1061/(asce)as.1943-5525.0000557
  29. Rao, A. H., & Puranik, T. G. (2018, June 25). Retrospective Analysis of Approach Stability in General Aviation Operations. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-3049
  30. Riboldi, C. E. D., Cacciola, S., & Ceffa, L. (2022). Studying and Optimizing the Take-Off Performance of Three-Surface Aircraft. Aerospace, 9(3). https://doi.org/10.3390/aerospace9030139
  31. Rohacs, J., & Rohacs, D. (2018). Problems and Barriers Impeding the Implementation of MagLev Assisted Aircraft Take-Off and Landing Concept. Journal of Transportation Technologies, 08(02), 91–118. https://doi.org/10.4236/jtts.2018.82006
  32. Saputra, A. D. (2017). Studi Analisis Penyebab Runway Excursion di Indonesia Berdasarkan Data Komite Nasional Keselamatan Transportasi (KNKT) Tahun 2007-2016. Warta Ardhia, 43(2), 93–104. https://doi.org/10.25104/wa.v43i2.305.93-104
  33. Seth, A., & Liem, R. P. (n.d.). Takeoff analysis of amphibious aircraft with implementation of a hydrofoil. http://lisa-airplanes.com/en/light-amphibious-aircraft-akoya/
  34. Syamsuar, S. (2015). Metoda Short Takeoff Landing (Studi Kasus Prestasi Terbang Takeoff-Landing Pesawat Udara Turbo Prop CN235). Warta Ardhia: Jurnal Perhubungan Udara, 41(2), 49–58
  35. Wang, L., Yin, H., Yang, K., Liu, H., & Zhu, J. (2020). Water takeoff performance calculation method for amphibious aircraft based on digital virtual flight. Chinese Journal of Aeronautics, 33(12), 3082–3091. https://doi.org/10.1016/j.cja.2020.03.019
  36. Wen, Q., Cheng, Z., Deng, R., & Yang, K. (2022). Influence of Wave Parameters on Taxiing Characteristics of Seaplane (pp. 347–358). https://doi.org/10.1007/978-981-19-9198-1_26
  37. Williams, J., Barlow, J., & Ranzenbach, R. (1999, March 1). Experimental Study of CD Variation With Aspect Ratio. https://doi.org/10.4271/1999-01-0649

Last update:

No citation recorded.

Last update: 2024-11-21 16:38:00

No citation recorded.