skip to main content

CNN ALGORITHM OPTIMIZATION FOR CLASSIFYING NUMBERS IN HANDWRITING

*Dinda Septiani orcid  -  Departemen Teknik Elektro, Politeknik Negeri Sriwijaya, Indonesia
Mohammad Fadhli  -  Departemen Teknik Elektro, Politeknik Negeri Sriwijaya, Indonesia
Sopian Soim  -  Departemen Teknik Elektro, Politeknik Negeri Sriwijaya, Indonesia
Dikirim: 9 Okt 2024; Diterbitkan: 31 Jan 2025.
Akses Terbuka Copyright (c) 2025 Transmisi: Jurnal Ilmiah Teknik Elektro under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Sari
Handwritten numeral recognition is an important challenge in image processing, with wide applications in areas such as document processing and data automation. This research aims to optimize the performance of Convolutional Neural Network (CNN) model in classifying handwritten numerals on MNIST dataset. In this research, experiments were conducted with variations in the number of CNN layers to evaluate their effect on model accuracy. The results show that the model with 4 convolutional layers achieves the highest accuracy of 92.41%, which signifies a significant improvement in the model's ability to extract important features from the image compared to the model with fewer layers. This research also applied the best model to a website that allows users to recognize handwritten numerals in real-time. This provides practical benefits in the development of automatic character recognition systems and shows how this technology can be applied directly in everyday life.
Fulltext View|Download
Kata Kunci: handwritten character recognition; Convolutional Neural Network; deep learning; model optimization;

Article Metrics:

  1. . Susim, T. & Cahyo D. (2021). Jurnal Syntax Admiration. Pengolahan Citra Untuk Pengenalan Wajah (Face Recognition) Menggunakan OpenCV, 2(3), 535
  2. . Ratna, S. (2020). Jurnal Ilmiah Technologia. Pengolahan Citra Digital Dan Histogram Dengan Python Dan Text Editor PhyCharm, 11(3), 181
  3. . Efrian, M. & Latifa, U. (2022). Jurnal POLEKTRO: Jurnal Power Elektronik. Image Recognition Berbasis Convolution Neural Network (CNN) Untuk Mendeteksi Penyakit Kulit Pada Manusia, 11(1), 278
  4. . Purba et al. (2022). Jurnal Ilmiah Teknik Informatika. Perancangan Alat Pendeteksi Kematangan Buah Nanas Dengan Menggunakan Mikrokontroler Dengan Metode Convolutional Neural Network (CNN), 2(1), 13-21
  5. . Mor et al. (2019). International Journal of Engineering and Advanced Technology (IJEAT). Handwritten Text Recognition: With Deep Learning and Android, 8(2S2), 172-178
  6. . Kumar, S.A., Swarnalatha, S. & Babu, B.Shoban. (2021). International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET). Hand Written Character Recognition Using CNN and PSO Techniques, 10(2), 974-978
  7. . Daniel & Irfan Maliki. (2020). Pengenalan Tulisan Tangan Menggunakan Metode Hidden Markov Model
  8. . Safitri, K A. & Wulanningrum, R. (2020). Aplikasi Pengenalan Pola Tulisan Tangan Menggunakan Metode Support Vector Machine
  9. . Viswanata et al. (2023). International Journal of Innovative Research in Computer and Communication Engineering. Handwritten Digit Recognition Using CNN, 11(1)
  10. . Alpaydin, E (2010), Introduction to Machine Learning, London, MIT Press
  11. . Sidik, A.D. & Ansawarman, A. (2022). Formosa Journal of Multidisciplinary Research (FJMR). Prediksi Jumlah Kendaraan Bermotor Menggunakan Machine Learning, 1(3), 559-568
  12. . Saputra, D. (2024). Jurnal JISSI. Upaya Pendidikan Menggunakan Machine Learning, 1(1), 57-62
  13. . Demirkaya, K.G., & Cavusoglu, U. (2022). Academic Platform Journal of Engineering and Smart Systems (APJESS). Handwritten Digit Recognition With Machine Learning Algorithms, 10(1), 9-18
  14. . Andika, L.A., Pratiwi, H & Handajani, S.S. (2019). Indonesian Journal of Statistics and Its Applications. Klasifikasi Penyakit Pneumonia Menggunakan Metode Convolutional Neural Network Dengan Optimasi Adaptive Momentum, 3(3), 331-340
  15. . Prakosa, Andhika Bagas, Hendry & Radius Tanone. (2023). Jurnal Implementasi Model Deep Learning Convolutional Neural Network (CNN) Pada Citra Penyakit Daun Jagung Untuk Klasifikasi Penyakit Tanaman, 6(1), 2621-1467

Last update:

No citation recorded.

Last update: 2025-03-01 01:32:12

No citation recorded.