Optimasi Proses Ozonasi pada Depolimerisasi κ-Karagenan dengan Metode Respon Permukaan

DOI: https://doi.org/10.14710/reaktor.17.1.%25p

Article Info
Submitted: 28-02-2017
Published: 12-04-2017
Section: Research Article



OPTIMIZATION OF OZONATION PROCESS FOR κ-CARRAGEENAN DEPOLYMERIZATION USING RESPONSE SURFACE METHODOLOGY. The objective of this research is to optimize the operating parameters in depolymerization of κ-carrageenan by ozone treatment. The optimization is done by using Box-Bhenken Design (BBD) model with ozonation time (5-15 minute), pH (3-11) and temperature (20-40oC) as the independent variables.The response of ozonation process is the degree of depolymerization of κ-carrageenan (DP). The initial molecular weight of refined κ-karagenan was 271 kDa. The κ-carrageenans powder was completely dissolved in distilled water to form 1% (weight/volume). The experiments were carried out in a 2000 ml of a glass reactor with an ozone gas sparger. The inlet ozone concentration was 80±2 ppm. The result shows that ozonation time, pH and temperature have significant effects during ozonation process (p< 0.05). Analysis of variance shows that the experimental data fit the model very well with the R2 value of 0.98. The optimum conditions during ozonation process are achieved at the reaction time of 15 min, ozonation pH of 3 and reaction temperature of 25oC. Under these optimum conditions the DP of κ-carrageenan is 91.513%.


Keywords: depolymerization; κ-carrageenan;optimization; ozonation process





Tujuan penelitian ini adalah menentukan kondisi optimum parameter operasi depolimerisasi κ-karagenan dengan perlakuan ozonasi. Optimasi dilakukan dengan menggunakan model statistika Box-Bhenken Design (BBD) dengan variabel yang digunakan yaitu waktu ozonasi (5-15 menit), pH (3-11), dan suhu (20-40oC). Respon dari proses ozonasi adalah derajat depolimerisasi κ-karagenan (DP). Berat molekul awal refined κ-karagenan adalah 271 kDa. Sampel κ-karagenan dilarutkan secara sempurna dalam air distilasi dan konsentrasi diatur 1% (berat/volume). Percobaan dilakukan dalam reaktor gelas volume 2000 ml yang dilengkapi dengan sparger gas ozon. Konsentrasi gas ozon yang masuk adalah 80±2 ppm. Hasil penelitian menunjukkan bahwa waktu ozonasi, pH, dan suhu berpengaruh secara signifikan terhadap proses ozonasi (p<0,05). Analisis varian menghasilkan ketelitian yang tinggi antara data eksperimen dan prediksi, dengan nilai koefisien R2 = 0,98. Kondisi optimum diperoleh pada waktu ozonasi 15 menit, pH ozonasi 3 dan temperatur reaksi 25oC. Pada kondisi optimum ini diperoleh DP κ-karagenan sebesar 91,513%.


Kata kunci:depolimerisasi; κ-carrageenan;optimasi; proses ozonasi 


optimization; ozonation process; depolymerization; κ-carrageenan

  1. Aji Prasetyaningrum 
    Departemen Teknik Kimia, Fakultas Teknik Universitas Diponegoro Jl. Prof. Soedarto SH Tembalang Semarang Telp./Fax. (024)7460058 / (024)76480675 ty , Indonesia
  2. Ratnawati Ratnawati 
    Departemen Teknik Kimia, Fakultas Teknik Universitas Diponegoro Jl. Prof. Soedarto SH Tembalang Semarang Telp./Fax. (024)7460058 / (024)76480675
  3. Bakti Jos 
    Departemen Teknik Kimia, Fakultas Teknik Universitas Diponegoro Jl. Prof. Soedarto SH Tembalang Semarang Telp./Fax. (024)7460058 / (024)76480675

Abad, L.V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Fu, H., Muroya, Y., Lin, M., Katsumura, Y., Relleve, L.S., Aranilla, C.T., and DeLaRosa, A.M., (2010), Radiolysis Studies of Aqueous κ-Carrageenan, Nuclear Instruments and Methods in Physics Research B, 268, pp. 1607-1612.

Aksoy, D.O., Sagol, E., (2016), Application of central composite design method to coal flotation: Modelling, optimization and verification, Journal Fuel, 183, pp. 609-616.

Bixler, H.J., Porse, H., (2010), A decade of change in the seaweed hydrocolloids industry, Journal of Applied Phycology, 23, pp. 321-335.

Campo, V.L., Kawano, D.F., Silva, D.B.D., and Carvalho, I., (2009), Carrageenans: Biological properties, chemical modifications and structural analysis – A review, Carbohydrate Polymers, 77, pp.167-180.

Duan, F., Yu, Y., Liu, Z., Tian, L., Mou, H., (2016), An effective method for the preparation of carrageenan oligosaccharides directly from Eucheuma cottonii using cellulase and recombinant κ-carrageenase, Algal Research, 15, pp. 93-99.

de Souza, L.A.R., Dore, C.M.P.G., Castro, A.J.G., de Azevedo, T.C.G., de Oliveira, M.T.B., Moura, M.F.V., Benevides, N.M B., Leite, E.L., (2012), Galactans from the Red Seaweed Amansia multifida and Their Effects on Inflammation, Angiogenesis, Coagulation and Cell Viability, Biomedicine & Preventive Nutrition, 2, pp. 154-162.

Hadiyanto, H., Sutrisnorrhadi., (2016), Response surface optimization of ultrasound assisted extraction (UAE) of phycocyanin from microalgae Spirulina platensis. Emirates Journal of Food and Agriculture, 28(4), pp. 227-234.

Haijin, M., Xiaolu, J., Huashi, G., (2003), A carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity, Journal of Applied Phycology, 15, pp. 297-303.

Jiao, G., Yu, G., Zhang, J., Ewart, H.S., (2011), Chemical structures and bioactivities of sulfated polysaccharides from marine algae, Marine Drugs, 9, pp. 196-223.

Kabal’nova, N.N., Murinov, K.Y., Mullagaliev, I.R., Krasnogorskaya, N.N., Shereshovets, V.V., Monakov, Y.B. and Zaikov, G.E., (2001), Oxidative destruction of chitosan under effect of ozone and hydrogen peroxide, Journal of Applied Polymer Science, 81, pp. 875-881.

Kalitnik, A.A., Barabanova, A.O.B., Nagorkaya, V.B., Reunov, A. V., Glazunov, V. P., Solov’eva, T. F., Yermak, I. M., (2013), Low Molecular Weight Derivatives of Different Carrageenan Types and Their Antiviral Activity, Journal of Applied Phycology, 25, pp. 65-72.

Karlsson, A., and Singh, S. K., (1999), Acid hydrolysis of sulfated polysaccharides. Desulphation and the effect on molecular mass. Carbohydrate Polymers, 38 (1), pp. 7-15.

Klein, B., Vanier, N. L., Moomand, K., Pinto, V. Z., Colussi, R., da Rosa Zavareze, E., and Dias, A. R. G., (2014), Ozone oxidation of cassava starch in aqueous solution at different pH, Food Chemistry, 155, pp. 17-173.

Loures, C.C.A., Alcântara, M.A.K., Filho, H.J.I., Teixeira, A.C.S.C., Silva, F.T., Paiva, T.C.B., Samanamud, G.R.L., (2013), Advanced Oxidative Degradation Processes : Fundamentals and Applications, International Review of Chemical Engineering, 5, pp. 102-120.

Lai, V. M.F., Lii, C.Y., Hung, W.L., Lu. T.J., (2000), Kinetic Compensation Effect in Depolymerisation of Food Polysaccharides, Food Chemistry, 68, pp. 319-325.

Lemeune, S., Barbe, J.M., Trichet, A. and Guilard, R., (2000), Degradation of cellulose models during an ozone treatment: ozonation of glucose and cellobiose with oxygen or nitrogen as carrier gas at different pH, Ozone Science and Engineering, 22, pp. 447-60.

Lii, C.-Y., Chen, C.-H., Yeh, A.-I., Lai, V. M.-F., (1999), Preliminary Study on the Degradation Kinetics of Agarose and Carrageenans by Ultrasound, Food Hydrocolloids, 13, pp. 477-481.

Necas, J., and Bartosikova, L., (2013), Carrageenan: a review, Veterinarni Medicina, 58, pp. 187-205.

Pomin, V.H. (2010). Structural and functional insights into sulfated galactans : a systematic review, Glycoconj Journal, 27, pp. 1-12.

Prasetyaningrum, A., Ratnawati, R., Jos, B., (2017), Kinetics of Oxidative Depolymerization of κ-carrageenan by Ozone, Bulletin of Chemical Reaction Engineering & Catalysis, in Press.

Qi, H., Zhang, Q., Zhao, T., Chen, R., Zhang, H., Niu, X., Li, Z., (2005), Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro, International Journal of Biological Macromolecules, 37, pp. 195-199.

Raman, R., Doble, M., (2015), κ-Carrageenan from marine red algae, Kappaphycus alvarezii – A Functional Food to Prevent Colon Carcinogenesis, Journal of Functional Foods, 15, pp. 354-364.

Ratnawati, R., Prasetyaningrum, A., Wardhani, D.H., (2016), Kinetics and Thermodynamics of Ultrasound-Assisted Depolymerization of κ-Carrageenan, Bulletin of Chemical Reaction Engineering & Catalysis, 11, pp. 48-58.

Regti, A., Laamari, M.R., Stiriba, S.E., Haddad, M.E., (2017), Use of response factorial design for process optimization of basic dye adsorption onto activated carbon derived from Persea species, Microchemical Journal 130, pp. 129-136.

Sandhu, H.P.S., Manthey, F., Simsek, S., (2012), Ozone gas affects physical and chemical properties of wheat starch (Triticum aestivum L.), Carbohydrate Polymers, 87, pp. 1261-1268.

Seydim, Z. B., Greene, A. K., (2004), Use of ozone in the food industry, LWT-Food Science and Technology, 37, pp. 453-460.

Singh, S. K., Jacobson, S. P., (1994), Kinetics of Acid Hydrolysis of κ-Carrageenan as Determined by Molecular Weight (SEC-MALLSRI), Gel Breaking Strength, and Viscosity Measurements, Carbohydrate Polymers, 23, pp. 89-103.

Silva, F.R.F., Dore, C.M.P.G., Marques, C.T., Nascimento, M.S., Benevides, N.M.B., Rocha, H. A.O., Chavante, S.F., Leite, E.L., (2010), Anticoagulant Activity, Paw Edema and Pleurisy Induced Carrageenan: Action of Major Types of Commercial Carrageenans, Carbohydrate Polymers, 79, pp. 26-33.

Sun, Y., Yang, B., Wu, Y., Liu, Y., Gu, X., Zhang, H., Wang, C., Cao, H., Huang, L., Wang, Z., (2015), Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods, Food Chemistry, 178, pp. 311-318.

Taghizadeh, M. T., Abdollahi, R., (2015), Influence of Different Degradation Techniques on the Molecular Weight Distribution of κ-Carrageenan. International Journal of Biochemistry and Biophysics, 3, pp. 25-33. DOI: 10.13189/ijbb.2015.030301.

Vreeman, H. J., Snoeren, T. H. M., Payens, T. A. J., (1980), Physicochemical Investigation of κ-Carrageenan in the Random State, Biopolymers, 19, pp. 1357-1354.

Vuong, Q. V., J. B. Golding, M. H. Nguyen and P. D. Roach., (2011), Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves, J. Food Eng, 110, pp. 1-8.

Wang, W., Zhang, P., Yua, G.L., Li, C.X., Hao, C., Qi, X., Zhang, L.J., Guan, H.S., (2012), Preparation and anti-influenza A virus activity of κ-carrageenan oligosaccharide and its sulphated derivatives, Food Chemistry, 133, pp. 880-888.

Wang, Y., Hollingsworth, R. I., and Kasper, D. L., (1999), Ozonolytic depolymerization of polysaccharides in aqueous solution, Carbohydrate Research, 319, pp. 141-147.

Wijesekara, I., Pangestuti, R., Kim, S.K., (2011), Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae, Carbohydrate Polymers, 84, pp. 14-21.

Wu, S.J., (2012), Degradation of κ-Carrageenan by Hydrolysis with Commercial α-Amylase, Carbohydrate Polymers, 89, pp. 394-396.

Yamada, T., Ogamo, A., Saito, T., Uchiyama, H., Nakagawa, Y., (2000), Preparation of O -acylated low-molecular-weight carrageenans with potent anti-HIV activity and low anticoagulant effect, Carbohydrate Polymers, 41, pp. 115-120.

Yao, Z., Wu, H., Zhang, S., Du, Y., (2014), Enzymatic Preparation of κ-Carrageenan Oligo-saccharides and Their Anti-Angiogenic Activity, Carbohydrate Polymers, 101, pp. 359-367.

Yuan, H., Song, J., (2005), Preparation, structural characterization and in vitro antitumor activity of kappa -carrageenan oligosaccharide fraction from kappaphycus striatum, Journal of Applied Phycology, 17, pp. 7-13.

Zhang, Q. A., Z. Q. Zhang, X. F. Yue, X. H. Fan, T. Li S. F. Chen., (2009), Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder, Food Chem, 116, pp. 513-518.

Zhou, G., Yao, W., Wang, C., (2006), Kinetics of microwave degradation of λ-carrageenan from Chondrus ocellatus. Carbohydrate Polymers, 64, pp. 73-77.

Zúñiga, E., Matsuhiro, B., and Mejías, E., (2006), Preparation of a low-molecular weight fraction by free radical depolymerization of the sulfated galactan from Schizymenia binderi (Gigartinales, Rhodophyta) and its anticoagulant activity, Carbohydrate Polymers, 66, pp. 208-215.