A novel single input double output (SIDO) converter for torque ripple minimization in solar powered BLDC motor

*Bapayya Naidu Kommula -  Department of Electrical and Electronics Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh, India-533001., India
Venkata Reddy Kota -  Department of Electrical and Electronics Engineering, Jawaharlal Nehru Technological University Kakinada, Kakinada, Andhra Pradesh, India-533001., India
Received: 11 Sep 2017; Revised: 17 Oct 2018; Accepted: 18 Nov 2018; Published: 13 Jun 2019; Available online: 15 Jul 2019.
Open Access Copyright (c) 2019 International Journal of Renewable Energy Development
Citation Format:
Cover Image
Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 336 301
Abstract

This paper proposes a new converter topology for torque ripple reduction in Brushless DC (BLDC) motor. Due to the torque ripple problem, the use of this motor is limited to few applications. In this paper, a Single Input Double Output (SIDO) converter is proposed to suppress the torque ripple in BLDC motor. The proposed SIDO converter provides two output voltages. One for supplying the motor throughout conduction time and second output voltage is given to the non-commutating phase of motor during commutation instants. This proposed SIDO converter is fed from Photo Voltaic (PV) system. This paper also presents a new Maximum Power Point Tracking (MPPT) based on trisection of Power-Voltage characteristics (TPVC) to attain the maximum power from the PV system. This scheme takes only 7 iterations to reach MPP. The intended configuration is developed and simulated in Matlab/Simulink environment. The results justify the superiority of proposed scheme that minimizes torque ripple in BLDC motor to only 6 to 12% from 50 to 80 % in conventional scheme and also extracts maximum power from PV system. ©2019. CBIORE-IJRED. All rights reserved

Keywords
BLDC motor, Torque Ripple, Single Input Double Output (SIDO) Converter, Maximum Power Point Tracking (MPPT)

Article Metrics:

  1. Bhukya, M.N., Kota V.R. (2017), A Novel PandOT-Neville’s Interpolation MPPT Scheme for Maximum PV System Energy Extraction. International Journal of Renewable Energy Development. doi:http://dx.doi.org/10.14710/ijred.0.X.%p.
  2. Carlson, R., Lajoie-Mazenc, M. and Fagundes. J. C. D. S. (1992), Analysis of torque ripple due to phase commutation in brushless DC machines, IEEE Trans. Ind. Appl., 28(3), 632–638.
  3. Chatterjee, A., Keyhani, A. and Kapoor, D. (2011), Identification of photovoltaic source models, IEEE Trans. Energy Convers., 26(3), 883-889.
  4. Chowdhary S.R., Hiranmay S. (2010), Maximum power point tracking of partially shaded solar photovoltaic array. Solar energy mater. Sol. Cells, 94:1441-1447.
  5. Elbaset, A.A., Ali, H. and Sattar, M. A.E. (2016), Implementation of a modified perturb and observe maximum power point tracking algorithm for photovoltaic system using an Embedded microcontroller, IET Renew. Power Gener., 10(4):551–560.
  6. Gules, R., Santos, W.M.D., Reis, F.A.D., Romaneli, E.F.R and Badin, A.A. (2014), A modified SEPIC converter with high static gain for renewable applications, IEEE Trans. Power Electron., 29(11), 5860-5871.
  7. Haines, G., Ertugrul, N. (2016), Wide speed range sensorless operation of brushless permanent magnet motor using flux linkage increment, IEEE Trans. Ind. Electron., 63(7), 4052-4060.
  8. Huang, X., Andrew, G., Gerada, C., Fang, Y. and Lu, Q. (2012), Design of a five-phase brushless DC motor for a safety critical aerospace application, IEEE Trans. Ind. Electron., 59(9), 3532-3541.
  9. Jiancheng, F., Xinxiu, Z. and Liu, G. (2013), Precise Accelerated Torque Control for Small Inductance Brushless DC Motor, IEEE Transactions On Power Electronics, 28(3): 1400-1412.
  10. Kota V.R., Bhukya, M.N. (2017), A novel linear tangents based PandO scheme for MPPT of a PV system, Renewable and Sustainable Energy Reviews, 71, 257-267.
  11. Kota, V.R., Bhukya, M.N. (2016), A simple and efficient MPPT scheme for PV module using 2-Dimensional look up table, 2016 IEEE Power and Energy Conference at Illinois (PECI), 1-7.
  12. Kouro, S., Leon, J.I., Vinnikov, D., Franquelo, L.G. (2015), An overview of recent research and emerging PV converter technology, IEEE Trans. Ind. Electron. Mag., 9(1), 47-61.
  13. Khan, J., Arsalan, M.H. (2016), Solar Power Technologies for sustainable electricity generation- A review, Renew. Sustain. Energy Rev, 55, 414-425.
  14. Li, Z., Songfa, Z., Zhou, S. and Ahn J.W. (2014), Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor, J Electr Eng Technol., 9, (5), 1569-1576.
  15. Quan, L., Peter, W. (2008), A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies with Three Different DC Link Configurations, IEEE Trans. Power Electron., 23(3), 1320-1333.
  16. Sheng, T., Wang. X., Zhang, J. and Deng, Z. (2015), Torque-Ripple mitigation for brushless DC machine drive system using one-cycle average torque control," IEEE Trans. Ind. Electron., 62(4),2114-2122.
  17. Pahalavani, M.R.A., Ayat, Y.S. and Vahedi, A. (2017), Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations, IET Ele. Power Appl., 11(6), 1124-1130.
  18. Park, S.J, Park, H. W., Lee, M.H., Harashima, F. (2000), A new approach for minimum Torque Ripple Maximum efficiency control of BLDC motor, IEEE Trans. Ind. Electron., 47(1), 109-114.
  19. Viswanathan, V., Jeevananthan, S. (2014), Approach for torque ripple reduction for brushless dc motor based on three-level neutral-point-clamped inverter with dc-dc converter, IET Power Electron., 8(1), 47-55.
  20. Welchko B.A., de Rossiter Correa M. B., and Lipo, T. A. (2004), A three-level MOSFET inverter for low-power drives," IEEE Trans. Ind. Electron., 51(3), 669-674.
  21. Xia, C.L. (2012), Permanent Magnet Brushless DC motor Drives and controls, Singpore: John Wiley andSons pvt. Ltd.