skip to main content

Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies

Energy and Environment Engineering Department, Quaid-e-Awam University of Engineering, Science and Technology Nawabshah, Pakistan

Published: 10 Jul 2018.
Editor(s): H Hadiyanto

Citation Format:
Abstract

­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­The aim of this study was to analyse the influence of temperature on electrical characteristics of crystalline and amorphous photovoltaic (PV) modules in outdoor conditions at Nawabshah. The experimental setup was made over the roof of the departmental building. The climatic conditions of site were recorded with the help of HP-2000 Professional Weather Station in three different timings of the day, i.e. morning, noon and evening. The electrical characteristics of the PV modules were recorded with Prova-210 and module temperatures with Prova-830. The maximum intensity of global solar radiation was recorded at noon and ambient temperature in the evening and the relative humidity in the morning hours. It was observed that amorphous module got 0.7°C, 1.0°C and 1.6°C more average temperature than polycrystalline, thin film and monocrystalline modules respectively. The average maximum measured open-circuit voltage was noted from amorphous with 96.7% and minimum from thin film with 81.3% of their respective values on standard conditions, whereas, the average maximum recorded short-circuit current was produced by thin film with 64.9% and minimum by amorphous with 51.4%. The average maximum power was produced by polycrystalline and minimum by amorphous module. It was discovered that the crystalline PV modules gave more fill factor than thin film and amorphous module.

Article History: Received January 6th 2018; Received in revised form May 5th 2018; Accepted May 26th 2018; Available online

How to Cite This Article: Jatoi, A.R., Samo, S.R. and Jakhrani, A.Q. (2018). Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies. Int. Journal of Renewable Energy Development, 7(2), 85-91.

https://doi.org/10.14710/ijred.7.2.85-91

Fulltext View|Download
Keywords: Climatic conditions; Module temperature; Electrical characteristics; Photovoltaic module; Power output
Funding: Quaid-e-Awam University of Engineering, Science and Technology (QUEST) Nawabshah

Article Metrics:

  1. Alami, A.H. (2014) Effects of evaporative cooling on efficiency of photovoltaic modules. Energy Conversion and Management, 77: 668-679
  2. Ali, H., Zahar, M.A., Bashir, M.A., Nasir, M.A., Ali, M. & Siddiqui, A.M. (2017) Effect of dust deposition on the performance of photovoltaic modules in Taxila, Pakistan. Thermal Science, 21(2), 915-923
  3. Almaktar, M., Rahman, H. A., Hassan, M.Y. & Rahman, S. (2013) Climate-based empirical model for PV module temperature estimation in tropical environment. Applied Solar Energy, 49(4), 192-201
  4. Arjyadhara, P., Ali, S.M. & Chitralekha, J. (2013) Analysis of solar PV cell performance with changing irradiance and temperature. International Journal of Engineering and Computer Science, 2(1), 214-220
  5. Asif, M. & Muneer, T. (2007) Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11(7), 1388-1413
  6. Asif, M. (2009) Sustainable energy options for Pakistan. Renewable and Sustainable Energy Reviews, 13(4), 903-909
  7. Belmonte, S., Núñez, V., Viramonte, J. G. & Franco, J. (2009) Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning. Renewable and Sustainable Energy Reviews, 13(6), 1475-1484
  8. Biwole, P., Eclache, P. & Kuznik, F. (2011) Improving the performance of solar panels by the use of phase-change materials. In World Renewable Energy Congress-Sweden, Linköping University Electronic Press, 57, 2953-2960
  9. Duffie, J.A. & Beckman, W.A. (2013) Solar engineering of thermal processes, Fourth Edition, New York: Wiley. 745-770
  10. Eveloy, V., Rodgers, P. & Bojanampati, S. (2012) Enhancement of Photovoltaic Solar Module Performance for Power Generation in the Middle East. In Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 28th Annual IEEE, 87-97
  11. Farooq, M. & Shakoor, A. (2013) Severe energy crises and solar thermal energy as a viable option for Pakistan. Journal of Renewable and Sustainable Energy, 5(1), 013104-013111
  12. Fuentes, M., Nofuentes, G., Aguilera, J., Talavera, D.L. & Castro, M. (2007) Application and validation of algebraic methods to predict the behaviour of crystalline silicon PV modules in Mediterranean climates. Solar Energy, 81(11), 1396-1408
  13. García, M.A. & Balenzategui, J.L. (2004) Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature calculations. Renewable Energy, 29: 1997-2010
  14. Ghani, F., Rosengarten, G., Duke, M. & Carson, J.K. (2015) On the influence of temperature on crystalline silicon solar cell characterisation parameters. Solar Energy, 112: 437-445
  15. Huang, B. J., Yang, P. E., Lin, Y. P., Lin, B. Y., Chen, H. J., Lai, R. C. & Cheng, J. S. (2011) Solar cell junction temperature measurement of PV module. Solar Energy, 85(2), 388-392
  16. Jakhrani, A. Q., Jatoi, A. R. & Jakhrani, S. H. (2017) Analysis and Fabrication of an Active Cooling System for Reducing Photovoltaic Module Temperature. Engineering, Technology & Applied Science Research, 7(5), pp-1980-1986
  17. Jakhrani, A. Q., Samo, S. R., Rigit, A. R. H. & Kamboh, S. A. (2013) Selection of models for calculation of incident solar radiation on tilted surfaces. World Applied Sciences Journal, 22(9), 1334-1343
  18. Jakhrani, A.Q., Othman, A.K., Rigit, A.R.H. & Samo, S.R. (2011a) Determination and comparison of different photovoltaic module temperature models for Kuching, Sarawak. IEEE-1st Conference on Clean Energy and Technology (CET), 231-236
  19. Jakhrani, A.Q., Othman, A.K., Rigit, A.R.H. & Samo, S.R. (2011b) Comparison of solar photovoltaic module temperature models. World Applied Science Journal, 14: 1-8
  20. Jakhrani, A.Q., Samo, S.R., Kamboh, S.A., Labadin, J. & Rigit, A.R.H. (2014) An improved mathematical model for computing power output of solar photovoltaic modules. International Journal of Photoenergy, 1-9
  21. Jatoi, A.R., Samo, S.R. & Jakhrani, A.Q. (2016) Influence of ambient temperature and solar radiations on photovoltaic module’s temperature and power output. International Journal of Natural & Engineering Sciences, 10 (2), 43-47
  22. Kalogirou, S.A. (2014) Solar Energy Engineering: Processes and Systems,” Second Edition, Amsterdam: Academic Press: Elsevier. 481-536
  23. King, D. L. (1997) Photovoltaic module and array performance characterization methods for all system operating conditions. In AIP Conference Proceedings, 394(1), 347-368
  24. Marion, B. (2008) Comparison of predictive models for photovoltaic module performance. In Photovoltaic Specialists Conference. (PVSC'08). 33rd IEEE, 1-6
  25. National Aeronautics and Space Administration (NASA). Surface meteorology and Solar Energy: RETScreen,
  26. https://eosweb.larc.nasa.gov/cgi-bin/sse/grid.cgi?email=skip@larc.nasa.gov&step=1&lat=26.3&lon=68.4&submit=Submit. Accessed on 14 Sep 2013
  27. Rafique, M. M. & Rehman, S. (2017) National energy scenario of Pakistan–Current status, future alternatives, and institutional infrastructure: An overview. Renewable and Sustainable Energy Reviews, 69: 156-167
  28. Sarkar, M.N.I. (2016) Effect of various model parameters on solar photovoltaic cell simulation: a SPICE analysis. Renewables: Wind, Water, and Solar, 3(13), 1-9
  29. Shakeel, S. R., Takala, J. & Shakeel, W. (2016) Renewable energy sources in power generation in Pakistan. Renewable and Sustainable Energy Reviews, 64: 421-434
  30. Skoplaki, E., Boudouvis, A.G. & Palyvos, J.A. (2008) A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting. Solar Energy Materials and Solar Cells, 92(11), 1393-1402
  31. Soto, W. D., Klein, S. A. & Beckman, W. A. (2006) Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80, 78–88

Last update:

  1. The Influence of Temperature and Irradiance on Performance of the photovoltaic panel in the Middle of Iraq

    Moafaq Kaseim Al-Ghezi, Roshen Tariq Ahmed, Miqdam Tariq Chaichan. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.43713
  2. Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study

    Moien A. Omar, Marwan M. Mahmoud. International Journal of Renewable Energy Development, 10 (4), 2021. doi: 10.14710/ijred.2021.36082
  3. An Improved Empirical Model for Estimation of Temperature Effect on Performance of Photovoltaic Modules

    Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Photoenergy, 2019 , 2019. doi: 10.1155/2019/1681353
  4. Artificial neural network enabled photovoltaic-thermoelectric generator modelling and analysis

    Yuxiao Zhu, Daniel W. Newbrook, Peng Dai, Jian Liu, Jichao Li, Chunming Wang, Harold M. Chong, C.H. Kees de Groot, Ruomeng Huang. Case Studies in Thermal Engineering, 61 , 2024. doi: 10.1016/j.csite.2024.105053
  5. Design, Analysis and Optimization of a Hybrid Microgrid System Using HOMER Software: Eskişehir Osmangazi University Example

    İpek Çetinbaş, Bünyamin Tamyürek, Mehmet Demirtaş. International Journal of Renewable Energy Development, 8 (1), 2019. doi: 10.14710/ijred.8.1.65-79
  6. Economic Integration of Renewable and Conventional Power Sources—A Case Study

    Muhammad Mateen Afzal Awan, Muhammad Yaqoob Javed, Aamer Bilal Asghar, Krzysztof Ejsmont, Zia-ur-Rehman. Energies, 15 (6), 2022. doi: 10.3390/en15062141
  7. Numerical Investigation of a Solar PV/T Air Collector Under the Climatic Conditions of Zarqa, Jordan

    Salem Nijmeh, Ahmad Ibrahim Bani Yaseen, Moh'd Sami Ashhab, Mohammad Juaidy. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.45306
  8. Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan

    Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32352
  9. Experimental Air Impingement Crossflow Comparison and Theoretical Application to Photovoltaic Efficiency Improvement

    Pablo Martínez-Filgueira, Ekaitz Zulueta, Ander Sánchez-Chica, Gustavo García, Unai Fernandez-Gamiz, Josu Soriano. Sustainability, 12 (14), 2020. doi: 10.3390/su12145577
  10. Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman

    Afzal Husain, Nabeel Z. Al-Rawahi, Nasser A. Al-Azri, Mohammed Al-Naabi, Musaab El-Tahir. International Journal of Renewable Energy Development, 12 (5), 2023. doi: 10.14710/ijred.2023.53287
  11. Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review

    Umar Abubakar Saleh, Muhammad Akmal Johar, Siti Amely Binti Jumaat, Muhammad Nazri Rejab, Wan Akashah Wan Jamaludin. International Journal of Renewable Energy Development, 2020. doi: 10.14710/ijred.0.33917
  12. Comparative Study of the Electrical Characteristics of Different Photovoltaic Modules in Outdoor Environment

    A. R. Jatoi, S. R. Samo, A. Q. Jakhrani. Engineering, Technology & Applied Science Research, 9 (5), 2019. doi: 10.48084/etasr.2976
  13. Analytical modelling, simulation and comparative study of multi-junction (GaInP2/InGaAs/Ge) solar cell efficiency

    Athil S. Al-Ezzi, M. N. M. Ansari, Syed K. Ahmed, Nadia M. L. Tan, Noor Afeefah Nordin, Saifuddin M. Nomanbhay. Journal of Computational Electronics, 22 (4), 2023. doi: 10.1007/s10825-023-02021-z

Last update: 2024-11-21 07:50:38

  1. An Improved Empirical Model for Estimation of Temperature Effect on Performance of Photovoltaic Modules

    Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Photoenergy, 2019 , 2019. doi: 10.1155/2019/1681353
  2. Solar power - A clean energy source that contributes to energy balance in Vietnam: A mini-review

    Dong V.H.. Journal of Mechanical Engineering Research and Developments, 42 (5), 2019. doi: 10.26480/jmerd.05.2019.177.181
  3. Design, Analysis and Optimization of a Hybrid Microgrid System Using HOMER Software: Eskişehir Osmangazi University Example

    İpek Çetinbaş, Bünyamin Tamyürek, Mehmet Demirtaş. International Journal of Renewable Energy Development, 8 (1), 2019. doi: 10.14710/ijred.8.1.65-79
  4. Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan

    Abdul Rehman Jatoi, Saleem Raza Samo, Abdul Qayoom Jakhrani. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32352
  5. Experimental Air Impingement Crossflow Comparison and Theoretical Application to Photovoltaic Efficiency Improvement

    Pablo Martínez-Filgueira, Ekaitz Zulueta, Ander Sánchez-Chica, Gustavo García, Unai Fernandez-Gamiz, Josu Soriano. Sustainability, 12 (14), 2020. doi: 10.3390/su12145577
  6. Evaluation of a PV-TEG Hybrid System Configuration for an Improved Energy Output: A Review

    Umar Abubakar Saleh, Muhammad Akmal Johar, Siti Amely Binti Jumaat, Muhammad Nazri Rejab, Wan Akashah Wan Jamaludin. International Journal of Renewable Energy Development, 2020. doi: 10.14710/ijred.0.33917