Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement



Plate heat exchangers, a compact-type heat exchanger, are commonly used heat transfer devices because of their superior characteristics. Their thermal performances are strongly dependent to working fluid circulating inside the system. The influences of nanofluid utilization as the working fluid in a plate heat exchanger was experimentally and numerically analysed in this study. In order to show off the improvement rate in heat transfer, the experiments were performed by using deionized water and TiO2-deionized water nanofluid. The nanofluid was prepared at the rate of 1.5 % as weighted. A surface-active agent, Triton X-100, was also doped into the mixture at the rate of 0.2% of a final concentration to prevent the sedimentation and flocculation of the nanoparticles inside the solution. The experiments were performed in different temperatures as 40°C, 45°C, 50°C and varying cold fluid mass flow rates as 3,4, 5, 6 and 7 lpm. In addition, using the experimental data, a numerical simulation was realized by ANSYS Fluent software. The both results indicate that heat transfer rate in plate heat exchanger can be improved using nanofluid as the working fluid in place of deionized water. The maximum improvement rate in heat transfer was obtained as 11 % in experimental study. It is also seen that experimental and numerical results are in good agreement.
©2019. CBIORE-IJRED. All rights reserved
Article History: Received May 18th 2018; Received in revised form October 17th 2018; Accepted January 8th 2019; Available online
How to Cite This Article: Sözen, A., Khanlari, A., and Çiftçi, E. (2019) Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement. Int. Journal of Renewable Energy Development, 8(1), 27-32.
https://doi.org/10.14710/ijred.8.1.27-32
Article Metrics:
- Barzegarian, R., Keshavarz Moraveji, M. & Aloueyan, A. (2016) Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2-water nanofluid. Experimental Thermal and Fluid Science, 74, 11-18
- Behrangzadeh, A. & Heyhat, M.M. (2016) The effect of using nano-silver dispersed water based nanofluid as a passive method for energy efficiency enhancement in a plate heat exchanger. Applied Thermal Engineering, 102, 311-317
- Han, X.H., Cui, L.Q., Chen, S.J., Chen, G.M. & Wang, Q. (2010) A numerical and experimental study of chevron, corrugated-plate heat exchangers. International Communications in Heat and Mass Transfer, 37, 1008-1014
- Holman, J. P. (2001) Experimental Methods for Engineers (7th edition). New York: McGraw-Hill
- Huang, D., Wu, Z. & Sunden, B. (2016) Effects of hybrid nanofluid mixture in plate heat exchangers. Experimental Thermal and Fluid Science, 72, 190-196
- Kabeel, A E, El Maaty, T.A, & El Samadony, Y. (2013) The effect of using nano-particles on corrugated plate heat exchanger performance. Applied Thermal Engineering, 52, 221-229
- Kakaç S., Liu H. & Pramuanjaroenkij A. (2012) Heat Exchangers: Selection, Rating, and Thermal Design. Florida, USA: CRC Press
- Kan, M., Ipek, O. & Gurel, B. (2015) Plate heat exchangers as a compact design and optimization of different channel angles, Acta Physica Polonica, 12, 49-52
- Kumar, V., Tiwari A. K., & Ghosh, S.K. (2016). Effect of chevron angle on heat transfer performance in plate heat exchanger using ZnO/water nanofluid, Energy Conversion and Management, 118, 142-154
- Pandey, S.D. & Nema, V.K. (2012) Experimental analysis of heat transfer and friction factor of nanofluid as a coolant in a corrugated plate heat exchanger, Experimental Thermal and Fluid Science, 38, 248-256
- Sarafraz, M. & Hormozi, F. (2016) Heat transfer, pressure drop and fouling studies of multiwalled carbon nanotube nanofluids inside a plate heat exchanger. Experimental Thermal and Fluid Science, 2016, 72, 1-11
- Serebryakova, M.A. Dimov, S.V., Bardakhanov, S. P. & Novopashin, S. A. (2015) Thermal conductivity, viscosity and rheology of a suspension based on Al2O3 nanoparticles and mixture of 90% ethylene glycol and 10% water, International Journal of Heat and Mass Transfer, 83, 187-191
- Taghizadeh-Tabari, Z., Zeinali Heris, S., Moradi, M. & Kahani, M. (2016) The study on application of TiO2/water nanofluid in plate heat exchanger of milk pasteurization industries. Renewable and Sustainable Energy Reviews, 58, 1318-1326
- Tiwari, A.K., Ghosh, P. & Sarkar, J. (2013). Performance comparison of the plate heat exchanger using different nanofluids. Experimental Thermal and Fluid Science, 49, 141-151
- Tiwari, A.K., Ghosh, P., Sarkar, J., Dahiya, H. & Parekh, J. (2014) Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids. International Journal of Thermal Sciences, 85, 93-103
- Yang, J., Jacobi, A. & Liu, W. (2017) Heat transfer correlations for single-phase flow in plate heat exchangers based on experimental data. Applied Thermal Engineering, 113, 1547-1557
Last update: 2021-03-04 02:04:37
-
Numerical investigation of thermal performance of single‐walled carbon nanotube nanofluid under turbulent flow conditions
Olatomide Gbenga Fadodun, Adebimpe Amos Amosun, Ayodeji Olalekan Salau, Johnson Ayodeji Ogundeji. Engineering Reports, 1 (1), 2019. doi: 10.1002/eng2.12024 -
Numerical and experimental investigation of alumina-based nanofluid effects on double-pipe heat exchanger thermal performances
A. Bendaraa, My. M. Charafi, A. Hasnaoui. SN Applied Sciences, 3 (2), 2021. doi: 10.1007/s42452-021-04195-2 -
Investigating environmental effects of different combi boilers using LPG
ATAOLLAH KHANLARI, Halil İbrahim Variyenli, Faraz Afshari. El-Cezeri Fen ve Mühendislik Dergisi, 2019. doi: 10.31202/ecjse.577861 -
Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine
Ümit Ağbulut, Mustafa Karagöz, Suat Sarıdemir, Ahmet Öztürk. Fuel, 127 , 2020. doi: 10.1016/j.fuel.2020.117521 -
Investigation of the effects of base fluid type of the nanofluid on heat pipe performance
Duygu Yilmaz Aydin, Metin Gürü, Adnan Sözen, Erdem Çiftçi. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 127 (1), 2021. doi: 10.1177/0957650920916285
Last update: 2021-03-04 02:04:40
-
Advanced loop thermosiphon with check valve (ALT/CV): Thermal performance and behavior
Booddachan K.. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.33805 -
Numerical and experimental investigation of alumina-based nanofluid effects on double-pipe heat exchanger thermal performances
A. Bendaraa, My. M. Charafi, A. Hasnaoui. SN Applied Sciences, 3 (2), 2021. doi: 10.1007/s42452-021-04195-2 -
Optimization of the effective parameters on ground-source heat pumps for space cooling applications using the Taguchi method
Özdemir M.B.. Heat Transfer Research, 51 (7), 2020. doi: 10.1615/HeatTransRes.2019029634 -
Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine
Ümit Ağbulut, Mustafa Karagöz, Suat Sarıdemir, Ahmet Öztürk. Fuel, 127 , 2020. doi: 10.1016/j.fuel.2020.117521 -
An overview of heat transfer enhancement literature in 2019
Guo Z.. Heat Transfer Research, 51 (9), 2020. doi: 10.1615/HEATTRANSRES.2020033880 -
Experimental investigation of nanolubricant usage in a cooling system at different nanoparticle concentrations
Akkaya M.. Heat Transfer Research, 51 (10), 2020. doi: 10.1615/HEATTRANSRES.2020033812 -
Thermal performance improvement of the heat pipe by employing dolomite/ethylene glycol nanofluid
Aydın D.Y.. International Journal of Renewable Energy Development, 9 (1), 2020. doi: 10.14710/ijred.9.1.23-27 -
Energy, exergy, and environmental (3e) assessments of various refrigerants in the refrigeration systems with internal heat exchanger
Gürel A.E.. Heat Transfer Research, 51 (11), 2020. doi: 10.1615/HEATTRANSRES.2020033716 -
Investigation of the effects of base fluid type of the nanofluid on heat pipe performance
Duygu Yilmaz Aydin, Metin Gürü, Adnan Sözen, Erdem Çiftçi. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 127 (1), 2021. doi: 10.1177/0957650920916285 -
Performance analysis of using CuO-Methanol nanofluid in a hybrid system with concentrated air collector and vacuum tube heat pipe
Kaya M.. Energy Conversion and Management, 127 , 2019. doi: 10.1016/j.enconman.2019.111936

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.