skip to main content

Estimating Weibull Parameters for Wind Energy Applications using Seven Numerical Methods: Case studies of three costal sites in West Africa

Agbassou Guenoukpati1Adekunlé Akim Salami1 scopus Mawugno Koffi Kodjo1Kossi Napo2

1Laboratoire de Recherche en Sciences de l’Ingénieur (LARSI), Department of Electrical Engineering, Ecole Nationale Supérieure d’Ingénieurs (ENSI), University of Lomé, BP 1515, Lomé, Togo

2Laboratoire sur l'Energie Solaire (LES), Faculté Des Sciences (FDS) ), University of Lomé, BP 1515, Lomé, Togo

Received: 21 Apr 2019; Revised: 1 Jan 2020; Accepted: 19 Feb 2020; Published: 15 Jul 2020; Available online: 4 May 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

In this study, the effectiveness of seven numerical methods is evaluated to determine the shape (K) and scale (C) parameters of Weibull distribution function for the purpose of calculating the wind speed characteristics and wind power density. The selected methods are graphical method (GPM), empirical method of Justus (EMJ), empirical method of Lysen (EML), energy pattern factor method (EPFM), maximum likelihood method (MLM) moment method (MOM) and the proposed. Hybrid method (HM) derived from EPFM and EMJ. The purpose is to identify the most appropriate method for computing the mean wind speed, wind speed standard deviation and wind power density for different costal locations in West Africa. Three costal sites (Lomé, Accra and Cotonou) are selected. The input data was collected, from January 2004 to December 2015 for Lomé site, from January 2009 to December 2015 for Accra site and from January 2009 to December 2012 for Cotonou. The results indicate that the precision of the computed mean wind speed, wind speed standard deviation and wind power density values change when different parameters estimation methods are used. Five of them which are EMJ, EML, EPF, MOM, ML, and HM method present very good accuracy while GPM shows weak ability for all three sites. 

Fulltext View|Download
Keywords: Modeling; Histogram of wind speed distribution; Weibull parameters estimation methods; Comparative evaluation

Article Metrics:

  1. Ajavon, A. S. A., Salami, A. A., Kodjo, M. K., & Bédja, K.-S. (2015). Comparative characterization study of the variability of wind energy potential by wind direction sectors for three coastal sites in Lomé, Accra and Cotonou. Journal of Power Technologies, 95(2), 134-142
  2. Akdağ, S. A., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761-1766.
  3. Arslan, T., Bulut, Y. M., & Yavuz, A. A. (2014). Comparative study of numerical methods for determining Weibull parameters for wind energy potential. Renewable and Sustainable Energy Reviews, 40, 820-825.
  4. Ayenagbo, K., Kimatu, J. N., & Rongcheng, W. (2011). A model for a sustainable energy supply strategy for the social-economic development of Togo. Journal of Economics and International Finance, 3(6), 387-398
  5. Azad, A., Rasul, M., & Yusaf, T. (2014). Statistical diagnosis of the best weibull methods for wind power assessment for agricultural applications. Energies, 7(5), 3056-3085.
  6. Brew-Hammond, A., & Kemausuor, F. (2009). Energy for all in Africa?to be or not to be?! Current Opinion in Environmental Sustainability, 1(1), 83-88.
  7. Celik, A. N. (2003). Energy output estimation for small-scale wind power generators using Weibull-representative wind data. Journal of Wind Engineering and Industrial Aerodynamics, 91(5), 693-707.
  8. Chang, T. P. (2011). Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application. Applied Energy, 88(1), 272-282.
  9. Deichmann, U., Meisner, C., Murray, S., & Wheeler, D. (2011). The economics of renewable energy expansion in rural Sub-Saharan Africa. Energy Policy, 39(1), 215-227.
  10. Dorvlo, A. S. S. (2002). Estimating wind speed distribution. Energy Conversion and Management, 43(17), 2311-2318.
  11. Genc, A., Erisoglu, M., Pekgor, A., Oturanc, G., Hepbasli, A., & Ulgen, K. (2005). Estimation of wind power potential using Weibull distribution. Energy Sources, 27(9), 809-822.
  12. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337-350.
  13. Jowder, F. A. L. (2009). Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain. Applied Energy, 86(4), 538-545.
  14. Justus, C. G., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for estimating wind speed frequency distributions. Journal of Applied Meteorology, 17(3), 350-353.<0350:MFEWSF>2.0.CO;2
  15. Keyhani, A., Ghasemi-Varnamkhasti, M., Khanali, M., & Abbaszadeh, R. (2010). An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran. Energy, 35(1), 188-201.
  16. Leung, D. Y. C., & Yang, Y. (2012). Wind energy development and its environmental impact: A review. Renewable and Sustainable Energy Reviews, 16(1), 1031-1039.
  17. Li, M.-F., Tang, X.-P., Wu, W., & Liu, H.-B. (2013). General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Conversion and Management, 70, 139-148.
  18. Lu, L., Yang, H., & Burnett, J. (2002). Investigation on wind power potential on Hong Kong islands?an analysis of wind power and wind turbine characteristics. Renewable Energy, 27(1), 1-12.
  19. Mentis, D., Hermann, S., Howells, M., Welsch, M., & Siyal, S. H. (2015). Assessing the technical wind energy potential in Africa a GIS-based approach. Renewable Energy, 83, 110-125.
  20. Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N., & Jalilvand, M. (2016). Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Conversion and Management, 108, 322-335.
  21. Mostafaeipour, A., Sedaghat, A., Dehghan-Niri, A. A., & Kalantar, V. (2011). Wind energy feasibility study for city of Shahrbabak in Iran. Renewable and Sustainable Energy Reviews, 15(6), 2545-2556.
  22. Rocha, P. A. C., de Sousa, R. C., de Andrade, C. F., & da Silva, M. E. V. (2012). Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil. Applied Energy, 89(1), 395-400.
  23. Safari, B. (2011). Modeling wind speed and wind power distributions in Rwanda. Renewable and Sustainable Energy Reviews, 15(2), 925-935.
  24. Salami, Adekunlé Akim, Ajavon, A. S. A., Kodjo, M. K., Ouedraogo, S., & Bédja, K.-S. (2018). The Use of Odd and Even Class Wind Speed Time Series of Distribution Histogram to Estimate Weibull Parameters. International Journal of Renewable Energy Development, 7(2), 139-150.
  25. Salami, Akim A, Ajavon, A. S. A., Kodjo, M. K., & Bedja, K.-S. (2016). Evaluation of Wind Potential for an Optimum Choice of Wind Turbine Generator on the Sites of Lomé, Accra, and Cotonou Located in the Gulf of Guinea. International Journal of Renewable Energy Development, 5(3).
  26. Salami, Akim Adekunle, Ajavon, A. S. A., Kodjo, M. K., & Bedja, K.-S. (2013). Contribution to improving the modeling of wind and evaluation of the wind potential of the site of Lome: Problems of taking into account the frequency of calm winds. Renewable Energy, 50, 449-455.
  27. Seguro, J. V, & Lambert, T. W. (2000). Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis. Journal of Wind Engineering and Industrial Aerodynamics, 85(1), 75-84.
  28. Stevens, M. J. M., & Smulders, P. T. (1979). The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Engineering, 132-145

Last update: 2021-06-23 13:55:31

  1. Simulation of Wind Speeds with Spatio-Temporal Correlation

    Moisés Cordeiro-Costas, Daniel Villanueva, Andrés E. Feijóo-Lorenzo, Javier Martínez-Torres. Applied Sciences, 11 (8), 2021. doi: 10.3390/app11083355

Last update: 2021-06-23 13:55:31

No citation recorded.