Optimization of PV/T Solar Water Collector based on Fuzzy Logic Control

*Omer K Ahmed orcid  -  Technical College – Kirkuk, Northern Technical University, Kirkuk, Iraq
Raid W Daoud  -  Technical College – Kirkuk, Northern Technical University, Kirkuk, Iraq
Shaimaa M Bawa  -  Technical College – Kirkuk, Northern Technical University, Kirkuk, Iraq
Ahmed H Ahmed  -  Technical College – Kirkuk, Northern Technical University, Kirkuk, Iraq
Received: 11 Jul 2019; Revised: 25 Apr 2020; Accepted: 10 May 2020; Published: 15 Jul 2020; Available online: 22 May 2020.
Open Access Copyright (c) 2020 International Journal of Renewable Energy Development
License URL: http://creativecommons.org/licenses/by/4.0

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 97 20
Hybrid solar collector (PV/T) is designed to produce electricity, hot water, or hot air at the same time as they operate solar cells and solar heaters in one system. This system is designed to increase the electrical efficiency of solar cells by absorbing heat from these cells. The fuzzy logic (FL) is a tool usually used to optimize the operation of the systems. In this paper, the FL is to monitor and correct the mainsystem parameters to remain optimization efficiency at a better level. Three affected variables were studied: Effect of reflective mirrors, the effect of the glass cover, and the effect of the lower reflector angle on the performance of the PV / T hybrid solar system. These three parameters are traveled to be inputs for the FL, and the PV temperature in addition to system efficiency is the output for it. The effect of solar radiation was found to have a great effect on the efficiency of the hybrid solar collector. The thermal efficiency was 82% for the given value of the PV and mirrors, while the efficiency down to 50 for another angle. By using the artificial intelligent the system behavior depends on its output, which called feedback close loop control, at a real-time process that optimizes the system efficiency and its output. ©2020. CBIORE-IJRED. All rights reserved
Keywords: Fuzzy logic; PV/T collector; Optimization

Article Metrics:

  1. Açıkkalp, E., Yerel Kandemir, S. and Ahmadi, M. H. (2019) .Performance Evaluation of the Thermophotovoltaic-Driven Thermoionic Refrigerator, Journal of Energy Resources Technology, 142(3). doi: 10.1115/1.4044558
  2. Ahmed, O. K. (2016). Effect of Dust on the Performance of Solar Water Collectors in Iraq, Int. Journal of Renewable Energy Development, 5(1), 65–72. doi: http://dx.doi.org/10.14710/ijred.5.1.65-72
  3. Ahmed, O. K. and Bawa, S. M. (2018). Reflective mirrors effect on the performance of the hybrid PV/thermal water collector, Energy for Sustainable Development. International Energy Initiative, 43, 235–246. doi: 10.1016/j.esd.2018.02.001
  4. Ahmed, O. K. and Bawa, S. M. (2019). The combined effect of nanofluid and reflective mirrors on the performance of PV/thermal solar collector., Thermal Science, 23(2A), 573–587. doi: https://doi.org/10.2298/TSCI171203092A
  5. Ahmed, O. K. and Daoud, R. W. (2018). Determining the Coefficients of the Wedge Storage Solar Collector Based on Fuzzy Logic, in University, I. (ed.) 2018 International Conference on Engineering Technologies and their Applications (ICETA). ALNajaf: IEEE, pp. 7–12.
  6. Ahmed, O. K., Daoud, R. W. and Mahmood, O. T. (2019) .Experimental Study of a Rectangular Storage Solar Collector with a numerical analysis, in IOP Conference Series: Materials Science and Engineering. Baghdad: IOP, pp. 1–14. doi: 10.1088/1757-899X/518/3/032023
  7. Ahmed, O. K. and Hussein, A. S. (2018) New design of solar chimney (case study), Case Studies in Thermal Engineering. Elsevier Ltd, 11(December 2017), 105–112. doi: 10.1016/j.csite.2017.12.008
  8. Ahmed, O. K. and Mohammed, Z. A. (2017a).Dust effect on the performance of the hybrid PV/Thermal collector, Thermal Science and Engineering Progress, 3, 114–122. doi: 10.4028/www.scientific.net/AMR.875-877.1908
  9. Ahmed, O. K. and Mohammed, Z. A. (2017b) .Theoretical and experimental study of the effect of design and operational variables on the performance of hybrid solar air heater, in 2nd scientific international conference. Basra: Southern technical university - Iraq, pp. 1–7.
  10. Armstrong, S. and Hurley, W. G. (2010).A thermal model for photovoltaic panels under varying atmospheric conditions, Applied Thermal Engineering. Elsevier Ltd, 30(11–12), 1488–1495. doi: 10.1016/j.applthermaleng.2010.03.012
  11. Baccoli, R., Mastino, C. C., Innamorati, R.,Serra, L., Curreli, S., Ghiani, E., Ricciu, R., and Marini, M. (2015).A mathematical model of a solar collector augmented by a flat plate above reflector: Optimum inclination of collector and reflector’, Energy Procedia., 81,. 205–214. doi: 10.1016/j.egypro.2015.12.085
  12. Bahaidarah, H. M.,Tanweer, B., Gandhidasan, P., and Rehman, S. (2015) .A combined optical, thermal and electrical performance study of a V-trough PV system-experimental and analytical investigations, Energies, 8(4), 2803–2827. doi: 10.3390/en8042803
  13. Chow, T. T. (2003) ‘Performance analysis of photovoltaic-thermal collector by explicit dynamic model’, Solar Energy, 75(2), 143–152. doi: https://doi.org/10.1016/j.solener.2003.07.001
  14. Duffie, J. A. and Beckman, W. A. (2013) Solar Engineering of Thermal Processes. fourth edi. John Wiley & Sons, Inc.
  15. Ghadiri, M., Sardarabadi, M., Pasandideh-Fard, M. and Moghadam, A.J. (2015) ‘Experimental investigation of a PVT system performance using nano ferrofluids’, Energy Conversion and Management. Elsevier Ltd, 103(July), 468–476. doi: 10.1016/j.enconman.2015.06.077
  16. Ghasempour, R., Nazari, M., Ebrahimi, M., Ahmadi, M.H., and Hadiyanto, H.. (2019) ‘Multi-criteria decision making (MCDM) approach for selecting solar plants site and technology: A review’, International Journal of Renewable Energy Development, 8(1), 15–25. doi: 10.14710/ijred.8.1.15-25
  17. Jin, G.L., Hj Othman,M.Y, Ruslan, H., and Sopian, K. (2013) ‘Photovoltaic Thermal ( PV / T ) Water Collector Experiment Study’, in 7th Int. Conf. Renew. Energy Sources, 117–124.
  18. Kaldellis, J. K. and Kapsali, M. (2011) ‘Simulating the dust effect on the energy performance of photovoltaic generators based on experimental measurements’, Energy. Elsevier Ltd, 36(8), 5154–5161. doi: 10.1016/j.energy.2011.06.018
  19. Khalil Ahmed, O. (2017) ‘Experimental and numerical investigation of cylindrical storage collector (case study)’, Case Studies in Thermal Engineering, 10, 362–369. doi: 10.1016/j.csite.2017.09.003
  20. Khalil Ahmed, O. and Aziz Mohammed, Z. (2017) ‘Influence of porous media on the performance of hybrid PV/Thermal collector’, Renewable Energy, 112, 378–387. doi: 10.1016/j.renene.2017.05.061
  21. Khatibi, A., Razi Astaraei, F. and Ahmadi, M. H. (2019) ‘Generation and combination of the solar cells: A current model review’, Energy Science and Engineering, 7(2), 305–322. doi: 10.1002/ese3.292
  22. Kostic, T.L, Pavlovic, T. M. and Pavlovid, Z. T. (2010) Optimal design of orientation of PV/T collector with reflectors, Applied Energy, 87(10), 3023–3029
  23. Kostic, L. and Pavlovic, Z. (2015) The effect of four flat plate reflectors on light energy-harvesting system characteristics, Physics, Chemistry and Technology, 13(3),. 171–180. doi: 10.2298/FUPCT1503171K
  24. Mohammadnezami, M.H., Ehyaei, M.A., Rosen, M.A., and Ahmadi, M.H.. (2015) ‘Meeting the electrical energy needs of a residential building with a wind-photovoltaic hybrid system’, Sustainability (Switzerland), 7(3), 2554–2569. doi: 10.3390/su7032554
  25. Shahdost, B.M., Jokar, M.A., Astaraei, F.R, and Ahmadi, M.H. (2019) ‘Modeling and economic analysis of a parabolic trough solar collector used in order to preheat the process fluid of furnaces in a refinery (case study: Parsian Gas Refinery)’, Journal of Thermal Analysis and Calorimetry. Springer International Publishing, 137(6), 2081–2097. doi: 10.1007/s10973-019-08135-6
  26. Omer, K. A. and Zala, A. M. (2018) ‘Experimental investigation of PV/thermal collector with theoretical analysis’, Renewable Energy Focus, 27(00), 67–77. doi: 10.1016/j.ref.2018.09.004
  27. Ozgoren, M., Aksoy, M.H, Bakir, C., and Dogan, S. (2013) Experimental Performance Investigation of hotovoltaic/Thermal (PV–T) System, EPJ Web of Conferences, 45, p. 01106. doi: 10.1051/epjconf/20134501106
  28. Rekha, L., Vazhappilly, C. V and Melvinraj, C. R. (2016) Numerical Simulation for Solar Hybrid Photovoltaic Thermal Air Collector, Procedia Technology. Elsevier B.V., 24, 513–522. doi: 10.1016/j.protcy.2016.05.088
  29. Tabet, I., Touafek, K.,Bellel, N.,Khelifa, A., and Adouane, M. (2014) Performances improvement of photovoltaic thermal air collector by planer reflector, Revue des Energies Renouvelables, 1, 219–225.
  30. Zamen, M., Baghban, A., Pourkiaei, S.M., and Ahmadi,M.H. (2019) Optimization methods using artificial intelligence algorithms to estimate thermal efficiency of PV/T system, Energy Science and Engineering, 7(3), 821–834. doi: 10.1002/ese3.312
  31. Zondag, H.A., De Vries, D.W., Van Helden, W.G, Van Zolingen, R.J., and Van Steenhoven, A.A. (2003) The yield of different combined PV-thermal collector designs, Solar Energy, 74(3), 253–269. doi: https://doi.org/10.1016/S0038-092X(03)00121-X

No citation recorded.