Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor


Bagasse as solid waste in sugarcane industry can be utilized as one of the potential raw materials in the bioprocess industry. This research aims to investigate the conversion of bagasse to bioethanol using simultaneous saccharification and fermentation in an airlift bioreactor. Neurospora intermedia was used as a biological agent that carried out the saccharification and fermentation of sugarcane bagasse simultaneously for bioethanol production. Cell morphology of N. intermedia in the form of pellet was required to provide free movement in the axial flow of airlift bioreactor. The medium pH strongly affects the morphological shape of N. intermedia. Therefore, the formation of good pellets of inoculum was observed under acidic conditions, i.e. pH 3.0 – 3.5. The effect of the initial concentration of nutrient on the inoculum growth was also investigated. Inoculums cultured in potato dextrose broth (PDB) medium with a half the strength of the common nutrient concentration of PDB qualitatively indicated good growth in terms of the size and density of cells. The inoculums with good morphological form were fed into the airlift bioreactor, which already contained a liquid medium with initial pH of 3.5 and also contained pre-treated bagasse. In experiments using the airlift bioreactor, the pre-treated bagasse was added to various nutrient concentrations of the PDB infusion medium. The highest bioethanol production from bagasse was monitored in the medium culture of half strength PDB infusion. The yield of bioethanol obtained from total sugarcane bagasse and PDB in an air lift bioreactor achieved approximately 40%, which has an infusion medium with a half-strength PDB and initial pH of 3.0.
Article Metrics:
- Arhamsyah (2010) Pemanfaatan biomassa kayu sebagai sumber energi terbarukan. Jurnal Riset Industri Hasil Hutan, 2(1), 42–48. doi: 10.24111/jrihh.v2i1.914
- Bezerra, T.L. & Ragauskas, A.J. (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 10(5), 634–647. doi: 10.1002/bbb.1662
- Bukhari, N.A., Bakar, N.A., Loh, S.K. & Choo, Y.M. (2014) Bioethanol production by fermentation of oil palm empty fruit bunches pretreated with combined chemicals. Journal of Applied Environmental and Biological Sciences, 5(10), 234-242
- Chandel, A.K., Kapoor, R.K., Singh, A., & Kuhad, R.C. (2006) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950. doi: 10.1016/j.biortech.2006.07.047
- Clancy, J., Oparaocha, S., & Roehr, U. (2006) Gender equity and renewable energies, in: Aßmann, D., Laumanns, U., Uh. D. (Eds.), Renewable energy: a global review of technologies, policies and markets. Earthscan, Oxon
- Dani, S. & Wibawa, A. (2018) Challenges and policy for biomass energy in Indonesia. International Journal of Business, Economics, and Law, 15(5), 41–47
- Deshpande, V., Keskar, S., Mishra, C., & Rao, M. (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme and Microbial Technology, 8(3), 149–152. doi: 10.1016/0141-0229(86)90103-1
- Directorate General of Estate Crops, Indonesian Ministry of Agriculture (2016) Tree crop estate statistics of Indonesia, sugarcane 2015-2017. Secretariate of Directorate General of Estate Crops, Directorate General of Estate Crops, Indonesian Ministry of Agriculture, Jakarta
- Dogaris, I., Vakontios, G., Kalogeris, E., Mamma, D., & Kekos, D. (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial Crops and Products, 29(2-3), 404–411. doi: 10.1016/j.indcrop.2008.07.008
- Ferreira, J.A., Lennartsson, P.R., & Taherzadeh, M.J. (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Engineering in Life Sciences, 15(8), 751–759. doi: 10.1002/elsc.201400213
- Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Peterson, J.J., Hoffman, R.W., York, S.W., Yomano, L.P., Miller, E.N., Shanmugam, K.T., & Ingram, L.O. (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM 160. Bioresource Technology, 102(3), 2702–2711. doi: 10.1016/j.biortech.2010.10.143
- Ghanadzadeh, H. & Ghorbanpour, M. (2012) Optimization of ethanol production from cheese whey fermentation in a batch-airlift bioreactor. Journal of Bioengineer & Biomedical Sciences, 2(2), 3 – 6. doi: 10.4172/2155-9538.1000111
- Gregg, D.J. & Saddler, J.N. (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51(4), 375–383. doi: 10.1002/(SICI)1097-0290(19960820)51:4<375::AID-BIT>3.0.CO;2-F
- Kaewpintong, K., Shotipruk, A., Powtongsook, S., Pavasant, P. (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 98(2), 288–295. doi: 10.1016/j.biortech.2006.01.011
- Karp, G. (2010) Cell Biology. 6th Edition International Student Version Edition. John Wiley & Sons, Singapore
- Lennartsson, P.R., Niklasson, C. & Taherzadeh, M.J. (2010) A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an airlift reactor. Bioresources Technology 102(2011), 4425 – 4432. doi: 10.1016/j.biortech.2010.12.089
- Liao, W., Liu, Y., Frear, C. & Chen, S. (2007) A new approach of pellet formation of a filamentous fungus – Rhizopus oryzae. Bioresource Technology, 98(18), 3415–3423. doi: 10.1016/j.biortech.2006.10.028
- Madu, J.O. & Agboola, B.O. (2018) Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech, 8 (15), doi: 10.1007/s13205-017-1033-x
- Mahamud, M.R. & Gomes, D.J. (2012) Enzymatic saccharification of sugarcane bagasse by the crude enzyme from indigenous fungi. Journal of Scientific Research, 4(1), 227–238. doi: 10.3329/jsr.v4i1.7745
- Maryana, R., Ma’rifatun, D., & Wheni, A.I. (2014) Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia, 47(2014), 250–254. doi: 10.1016/j.egypro.2014.01.221
- Nair, R.B., Lennartsson, P.R, & Taherzadeh, M.J. (2016) Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express, 6(31), 1–10. doi: 10.1186/s13568-016-0203-2
- Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R., Taherzadeh, M.J. (2015) Dilute phosporic acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Industrial Crops and Products, 69(2015), 314–323. doi: 10.1016/j.indcrop.2015.02.038
- Park, Y.C., San, K.Y., & Bennett, G.N. (2007) Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Applied Microbiology and Biotechnology, 76(2), 349–356. doi: 10.1007/s00253-007-0998-5
- Ramadoss, G. & Muthukumar, K. (2016) Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production. Renewable Energy, 99(2016), 1092–1102. doi: 10.1016/j.renene.2016.08.003
- Restiawaty, E. & Dewi, A. (2017) Comparison of pretreatment methods on vetiver leaves for efficient processes of simultaneous saccharification and fermentation by Neurospora sp. Journal of Physics: Conference Series, 877(2017), 1–7. doi: 10.1088/1742-6596/877/1/012048
- Restiawaty, E., Arina, L.A., & Budhi, Y.W. (2018) Development of bioethanol production from sugarcane bagasse using Neurospora intermedia on solid state culture. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 20(2), 98–103
- Restiawaty, E., Dewi, A., & Budhi, Y.W. (2019) Utilization of vertiver grass containing metals as lignocellulosic raw materials for bioethanol production. Biofuels, doi: 10.1080/17597269.2018.1564481
- Rezende, C.A., deLima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W., & Polikarpov, I. (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(54), 1–18. doi: 10.1186/1754-6834-4-54
- Vicente, A.A., Dluhý, M., and Teixeira, J.A. (1999) Increase of ethanol productivity in an airlift reactor with a modified draught tube. The Canadian Journal of Chemical Engineering 77, 497 – 502. doi: https://doi.org/10.1515/revce-2016-0005
- Wahono, S.K., Rosyida, V.T., Darsih, C., Pratiwi, D., Frediansyah, A., & Hernawan (2015) Optimization of simultaneous saccharification and fermentation incubation time using cellulose enzyme for sugarcane bagasse on the second-generation bioethanol production technology. Energy Procedia, 65(2015), 331–336. doi: 10.1016/j.egypro.2015.01.061
- Ward, O.P. (2012) Production of recombinant proteins by filamentous fungi. Biotechnology Advances, 30(5), 1119–1139. doi: 10.1016/j.biotechadv.2011.09.012
- Xiros, C., Topakas, E., Katapodis, P., & Christakopoulos, P. (2008) Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Bioresource Technology, 99(13), 5427–5435. doi: 10.1016/j.biortech.2007.11.010
- Yuliani, F. & Nugraheni, F. (2010) Pembuatan pupuk organik (kompos) dari arang ampas tebu dan limbah ternak. Sains dan Teknologi, 3(1), 1–11
- Zha, Y., Muiwijk, B., Coulier, L. & Punt, P.J. (2012) Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentastion Processes. Journal of Bioporcessing & Biotechniques 2(1),1 – 12. doi: 10.4172/2155-9821.1000112
Last update: 2021-02-28 00:39:20
Last update: 2021-02-28 00:39:20

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.