skip to main content

Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor

11. Research Group of Chemical Engineering Process Design and Development, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia, Indonesia

22. Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Indonesia, Indonesia

3Biosciences and Biotechnology Research Center, Institut Teknologi Bandung, Indonesia, Indonesia

4 Research Group of Chemical Engineering Process Design and Development, Faculty of Industrial Technology, Institut Teknologi Bandung, Indonesia, Indonesia

5 Research Group of Biochemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia, Indonesia

View all affiliations
Received: 10 Nov 2019; Revised: 16 Feb 2020; Accepted: 9 Mar 2020; Available online: 6 May 2020; Published: 15 Jul 2020.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Bagasse as solid waste in sugarcane industry can be utilized as one of the potential raw materials in the bioprocess industry. This research aims to investigate the conversion of bagasse to bioethanol using simultaneous saccharification and fermentation in an airlift bioreactor. Neurospora intermedia was used as a biological agent that carried out the saccharification and fermentation of sugarcane bagasse simultaneously for bioethanol production. Cell morphology of N. intermedia in the form of pellet was required to provide free movement in the axial flow of airlift bioreactor. The medium pH strongly affects the morphological shape of N. intermedia. Therefore, the formation of good pellets of inoculum was observed under acidic conditions, i.e. pH 3.0 – 3.5. The effect of the initial concentration of nutrient on the inoculum growth was also investigated. Inoculums cultured in potato dextrose broth (PDB) medium with a half the strength of the common nutrient concentration of PDB qualitatively indicated good growth in terms of the size and density of cells. The inoculums with good morphological form were fed into the airlift bioreactor, which already contained a liquid medium with initial pH of 3.5 and also contained pre-treated bagasse. In experiments using the airlift bioreactor, the pre-treated bagasse was added to various nutrient concentrations of the PDB infusion medium. The highest bioethanol production from bagasse was monitored in the medium culture of half strength PDB infusion. The yield of bioethanol obtained from total sugarcane bagasse and PDB in an air lift bioreactor achieved approximately 40%, which has an infusion medium with a half-strength PDB and initial pH of 3.0. 

Fulltext View|Download
Keywords: Bioethanol; Airlift Bioreactor; Sugarcane Bagasse; Neurospora intermedia; Pellet
Funding: Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT) from Ministry of Research

Article Metrics:

  1. Arhamsyah (2010) Pemanfaatan biomassa kayu sebagai sumber energi terbarukan. Jurnal Riset Industri Hasil Hutan, 2(1), 42–48. doi: 10.24111/jrihh.v2i1.914
  2. Bezerra, T.L. & Ragauskas, A.J. (2016) A review of sugarcane bagasse for second-generation bioethanol and biopower production. Biofuels, Bioproducts and Biorefining, 10(5), 634–647. doi: 10.1002/bbb.1662
  3. Bukhari, N.A., Bakar, N.A., Loh, S.K. & Choo, Y.M. (2014) Bioethanol production by fermentation of oil palm empty fruit bunches pretreated with combined chemicals. Journal of Applied Environmental and Biological Sciences, 5(10), 234-242
  4. Chandel, A.K., Kapoor, R.K., Singh, A., & Kuhad, R.C. (2006) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresource Technology, 98(10), 1947–1950. doi: 10.1016/j.biortech.2006.07.047
  5. Clancy, J., Oparaocha, S., & Roehr, U. (2006) Gender equity and renewable energies, in: Aßmann, D., Laumanns, U., Uh. D. (Eds.), Renewable energy: a global review of technologies, policies and markets. Earthscan, Oxon
  6. Dani, S. & Wibawa, A. (2018) Challenges and policy for biomass energy in Indonesia. International Journal of Business, Economics, and Law, 15(5), 41–47
  7. Deshpande, V., Keskar, S., Mishra, C., & Rao, M. (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme and Microbial Technology, 8(3), 149–152. doi: 10.1016/0141-0229(86)90103-1
  8. Directorate General of Estate Crops, Indonesian Ministry of Agriculture (2016) Tree crop estate statistics of Indonesia, sugarcane 2015-2017. Secretariate of Directorate General of Estate Crops, Directorate General of Estate Crops, Indonesian Ministry of Agriculture, Jakarta
  9. Dogaris, I., Vakontios, G., Kalogeris, E., Mamma, D., & Kekos, D. (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Industrial Crops and Products, 29(2-3), 404–411. doi: 10.1016/j.indcrop.2008.07.008
  10. Ferreira, J.A., Lennartsson, P.R., & Taherzadeh, M.J. (2015) Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Engineering in Life Sciences, 15(8), 751–759. doi: 10.1002/elsc.201400213
  11. Geddes, C.C., Mullinnix, M.T., Nieves, I.U., Peterson, J.J., Hoffman, R.W., York, S.W., Yomano, L.P., Miller, E.N., Shanmugam, K.T., & Ingram, L.O. (2011) Simplified process for ethanol production from sugarcane bagasse using hydrolysate-resistant Escherichia coli strain MM 160. Bioresource Technology, 102(3), 2702–2711. doi: 10.1016/j.biortech.2010.10.143
  12. Ghanadzadeh, H. & Ghorbanpour, M. (2012) Optimization of ethanol production from cheese whey fermentation in a batch-airlift bioreactor. Journal of Bioengineer & Biomedical Sciences, 2(2), 3 – 6. doi: 10.4172/2155-9538.1000111
  13. Gregg, D.J. & Saddler, J.N. (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering, 51(4), 375–383. doi: 10.1002/(SICI)1097-0290(19960820)51:4<375::AID-BIT>3.0.CO;2-F
  14. Kaewpintong, K., Shotipruk, A., Powtongsook, S., Pavasant, P. (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresource Technology, 98(2), 288–295. doi: 10.1016/j.biortech.2006.01.011
  15. Karp, G. (2010) Cell Biology. 6th Edition International Student Version Edition. John Wiley & Sons, Singapore
  16. Lennartsson, P.R., Niklasson, C. & Taherzadeh, M.J. (2010) A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an airlift reactor. Bioresources Technology 102(2011), 4425 – 4432. doi: 10.1016/j.biortech.2010.12.089
  17. Liao, W., Liu, Y., Frear, C. & Chen, S. (2007) A new approach of pellet formation of a filamentous fungus – Rhizopus oryzae. Bioresource Technology, 98(18), 3415–3423. doi: 10.1016/j.biortech.2006.10.028
  18. Madu, J.O. & Agboola, B.O. (2018) Bioethanol production from rice husk using different pretreatments and fermentation conditions. 3 Biotech, 8 (15), doi: 10.1007/s13205-017-1033-x
  19. Mahamud, M.R. & Gomes, D.J. (2012) Enzymatic saccharification of sugarcane bagasse by the crude enzyme from indigenous fungi. Journal of Scientific Research, 4(1), 227–238. doi: 10.3329/jsr.v4i1.7745
  20. Maryana, R., Ma’rifatun, D., & Wheni, A.I. (2014) Alkaline pretreatment on sugarcane bagasse for bioethanol production. Energy Procedia, 47(2014), 250–254. doi: 10.1016/j.egypro.2014.01.221
  21. Nair, R.B., Lennartsson, P.R, & Taherzadeh, M.J. (2016) Mycelial pellet formation by edible ascomycete filamentous fungi, Neurospora intermedia. AMB Express, 6(31), 1–10. doi: 10.1186/s13568-016-0203-2
  22. Nair, R.B., Lundin, M., Brandberg, T., Lennartsson, P.R., Taherzadeh, M.J. (2015) Dilute phosporic acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Industrial Crops and Products, 69(2015), 314–323. doi: 10.1016/j.indcrop.2015.02.038
  23. Park, Y.C., San, K.Y., & Bennett, G.N. (2007) Characterization of alcohol dehydrogenase 1 and 3 from Neurospora crassa FGSC2489. Applied Microbiology and Biotechnology, 76(2), 349–356. doi: 10.1007/s00253-007-0998-5
  24. Ramadoss, G. & Muthukumar, K. (2016) Ultrasound assisted metal chloride treatment of sugarcane bagasse for bioethanol production. Renewable Energy, 99(2016), 1092–1102. doi: 10.1016/j.renene.2016.08.003
  25. Restiawaty, E. & Dewi, A. (2017) Comparison of pretreatment methods on vetiver leaves for efficient processes of simultaneous saccharification and fermentation by Neurospora sp. Journal of Physics: Conference Series, 877(2017), 1–7. doi: 10.1088/1742-6596/877/1/012048
  26. Restiawaty, E., Arina, L.A., & Budhi, Y.W. (2018) Development of bioethanol production from sugarcane bagasse using Neurospora intermedia on solid state culture. Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 20(2), 98–103
  27. Restiawaty, E., Dewi, A., & Budhi, Y.W. (2019) Utilization of vertiver grass containing metals as lignocellulosic raw materials for bioethanol production. Biofuels, doi: 10.1080/17597269.2018.1564481
  28. Rezende, C.A., deLima, M.A., Maziero, P., deAzevedo, E.R., Garcia, W., & Polikarpov, I. (2011) Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels, 4(54), 1–18. doi: 10.1186/1754-6834-4-54
  29. Vicente, A.A., Dluhý, M., and Teixeira, J.A. (1999) Increase of ethanol productivity in an airlift reactor with a modified draught tube. The Canadian Journal of Chemical Engineering 77, 497 – 502. doi: https://doi.org/10.1515/revce-2016-0005
  30. Wahono, S.K., Rosyida, V.T., Darsih, C., Pratiwi, D., Frediansyah, A., & Hernawan (2015) Optimization of simultaneous saccharification and fermentation incubation time using cellulose enzyme for sugarcane bagasse on the second-generation bioethanol production technology. Energy Procedia, 65(2015), 331–336. doi: 10.1016/j.egypro.2015.01.061
  31. Ward, O.P. (2012) Production of recombinant proteins by filamentous fungi. Biotechnology Advances, 30(5), 1119–1139. doi: 10.1016/j.biotechadv.2011.09.012
  32. Xiros, C., Topakas, E., Katapodis, P., & Christakopoulos, P. (2008) Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Bioresource Technology, 99(13), 5427–5435. doi: 10.1016/j.biortech.2007.11.010
  33. Yuliani, F. & Nugraheni, F. (2010) Pembuatan pupuk organik (kompos) dari arang ampas tebu dan limbah ternak. Sains dan Teknologi, 3(1), 1–11
  34. Zha, Y., Muiwijk, B., Coulier, L. & Punt, P.J. (2012) Inhibitory Compounds in Lignocellulosic Biomass Hydrolysates during Hydrolysate Fermentastion Processes. Journal of Bioporcessing & Biotechniques 2(1),1 – 12. doi: 10.4172/2155-9821.1000112

Last update:

  1. The Hydrolysis of Cow’s Rumen and Rice Straw Mixture using Sulfuric Acid and The Fermentation of Its Hydrolysate in Bioethanol Production

    Megawati, Forita Dyah Arianti, Agung Prabowo, Widi Astuti, Zuhriyan Ash Shiddieqy Bahlawan, Bambang Haryanto, Miranti Dian Pertiwi, Chanifah, Teguh Prasetyo, Joko Triastono, Ira Nurhayati Djarot, Arif Dwi Santoso, Sri Peni Wijayanti, Keisha Ruthshanna Zelda, Dionicius Cita Buana Liman, D. Dwi Anggoro, A.C. Kumoro, D. Dahnum, W.K. Restu, K.C. Sembiring, Indriyati, S.T.C.L. Ndruru, A.M.H. Putri. E3S Web of Conferences, 503 , 2024. doi: 10.1051/e3sconf/202450302002
  2. Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis

    Yasindra Sandamini Chandrasiri, W. M. Lakshika Iroshani Weerasinghe, D. A. Tharindu Madusanka, Pathmalal M. Manage. International Journal of Renewable Energy Development, 11 (1), 2022. doi: 10.14710/ijred.2022.41774
  3. Emissions Characteristics and Engine Performance from the Interaction Effect of EGR and Diesel-Ethanol Blends in Diesel Engine

    Mohammed Ali Fayad, Moafaq Kaseim Al-Ghezi, Sanaa A Hafad, Slafa I Ibrahim, Marwa K Abood, Hind A Al-Salihi, Louay A Mahdi, Miqdam Tariq Chaichan, Hayder Abed Dhahad. International Journal of Renewable Energy Development, 11 (4), 2022. doi: 10.14710/ijred.2022.45051
  4. Strain improvement for enhanced erythritol production by Moniliella pollinis Mutant-58 using jaggery as a cost-effective substrate

    Anil B. Khatape, Vidhya Rangaswamy, Syed G. Dastager. International Microbiology, 27 (2), 2023. doi: 10.1007/s10123-023-00411-8
  5. Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation

    Thirawat Mueansichai, Thaneeya Rangseesuriyachai, Nuttha Thongchul, Suttichai Assabumrungrat. International Journal of Renewable Energy Development, 11 (2), 2022. doi: 10.14710/ijred.2022.43740
  6. Bioethanol production from coconut husk using DES-NADES pretreatment and enzymatic hydrolysis method

    Muhammad Yerizam, Asyeni Miftahul Jannah, Nabila Aprianti, Yandriani Yandriani, Muhammad Rendana, Annisa Qonita Ernas, Juice Lowise Tamba. Comptes Rendus. Chimie, 26 (S1), 2024. doi: 10.5802/crchim.226
  7. Cultivation of Chlorella vulgaris in mediums with varying nitrogen sources and concentrations to induce the lipid yield

    Elvi Restiawaty, Erly Marwani, Soen Steven, Gabriela Mega Rahayu, Fadhilah Hanif, Tirto Prakoso. Indian Chemical Engineer, 2023. doi: 10.1080/00194506.2022.2164525
  8. Lignocellulosic bioethanol production using Neurospora intermedia in consolidated bioprocessing (CBP) system

    Elvi Restiawaty, Arinta Dewi, Tareqh Al Syifa Elgi Wibisono, Yogi Wibisono Budhi. Biofuels, 14 (4), 2023. doi: 10.1080/17597269.2022.2137948
  9. Cultivation of Chlorella vulgaris in mediums with varying nitrogen sources and concentrations to induce the lipid yield

    Elvi Restiawaty, Erly Marwani, Soen Steven, Gabriela Mega Rahayu, Fadhilah Hanif, Tirto Prakoso. Indian Chemical Engineer, 65 (4), 2023. doi: 10.1080/00194506.2022.2164525
  10. Technological Advancement in Algal Biofuels Production

    S. M. Bhatt. Clean Energy Production Technologies, 2023. doi: 10.1007/978-981-19-6806-8_5

Last update: 2024-12-19 16:37:49

No citation recorded.