CFD Investigation of A New Elliptical-Bladed Multistage Savonius Rotors

*Khalid Mrigua scopus  -  Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Abdelghani Toumi  -  Laboratoire D’ingénierie, Management Industriel et Innovation Université Hassan, Settat, Morocco
Mounia Zemamou  -  Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Bader Ouhmmou  -  Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Yahya Lahlou  -  Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Mohammed Aggour  -  Laboratory of Renewable Energy, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
Received: 17 Apr 2020; Revised: 25 Jun 2020; Accepted: 29 Jun 2020; Published: 15 Oct 2020; Available online: 1 Jul 2020.
Open Access License URL:

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 560 342
The Savonius-conventional wind turbine is a class of wind turbines designed with a vertical axis. It has a good starting capacity and   an insensitivity to wind direction. It works relatively at low wind speed in an easy installation. Savonius wind turbine faces major drawbacks, including some of the low efficiency and high negative torque created by the returning blade. Many attempts have been undertaken to optimize the blade’s shape to increase the performance of these wind turbines. The vertical axis is still under development. The elliptical-blades with a cut angle equal 47.50° have recently shown enhanced performance. In this study, we investigate the effect of Elliptical-bladed multistage Savonius Rotors (rotor aspect ratio, stage aspect ratio) on the performance by means of numerical simulation. The results obtained by comparison of one, two, and three-stage rotors indicate that the maximum power coefficient increase with a number of the stages (for the rotors with similar RAR of 0.7). Moreover, for the rotors with similar SAR of 0.7, the two stages have the highest performance than others.©2020. CBIORE-IJRED. All rights reserved
Keywords: Savonius rotor; Wind energy; multistage; numerical simulation

Article Metrics:

  1. Akwa, J. V., da Silva Júnior, G. A., & Petry, A. P. (2012). Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics. Renewable energy, 38(1), 141‑149.
  2. Aldos, T. K. (1984). Savonius rotor using swinging blades as an augmentation system. Wind Engineering, 214‑220.
  3. Aldoss, T. K., & Najjar, Y. S. (1985). Further development of the swinging-blade Savonius rotor. Wind Engineering, 165‑170.
  4. Alom, N., Kolaparthi, S. C., Gadde, S. C., & Saha, U. K. (2016). Aerodynamic design optimization of elliptical-bladed Savonius-style wind turbine by numerical simulations. ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering.
  5. Alom, N., & Saha, U. K. (2017). Arriving at the optimum overlap ratio for an elliptical-bladed Savonius rotor. ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition.
  6. Alom, N., & Saha, U. K. (2018). Performance evaluation of vent-augmented elliptical-bladed savonius rotors by numerical simulation and wind tunnel experiments. Energy, 152, 277‑290.
  7. Alom, N., and Saha, U.K. (2019). Drag and lift characteristics of a novel elliptical-bladed Savonius rotor with vent augmenters. Journal of Solar Energy Engineering 141.
  8. Altan, B. D., & Atılgan, M. (2010). The use of a curtain design to increase the performance level of a Savonius wind rotors. Renewable Energy, 35(4), 821‑829.
  9. Bach, G. von. (1931). Untersuchungen über Savonius-rotoren und verwandte strömungsmaschinen. Forschung auf dem Gebiet des Ingenieurwesens A, 2(6), 218‑231.
  10. Banerjee, A., Roy, S., Mukherjee, P., & Saha, U. K. (2014). Unsteady flow analysis around an elliptic-bladed Savonius-style wind turbine. ASME 2014 Gas Turbine India Conference.
  11. Benesh, A. H. (1988). Wind turbine system using a vertical axis savonius-type rotor. Google Patents.
  12. Blackwell, B. F., Feltz, L. V., & Sheldahl, R. E. (1977). Wind tunnel performance data for two-and three-bucket Savonius rotors. Sandia Laboratories Springfield, VA, USA.
  13. Chen, J., Chen, L., Nie, L., Xu, H., Mo, Y., & Wang, C. (2016). Experimental study of two-stage Savonius rotors with different gap ratios and phase shift angles. Journal of Renewable and Sustainable Energy, 8(6), 063302.
  14. ElCheikh, A., Elkhoury, M., Kiwata, T., & Kono, T. (2018). Performance analysis of a small-scale orthopter-type vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 180, 19‑33.
  15. Frikha, S., Driss, Z., Ayadi, E., Masmoudi, Z., & Abid, M. S. (2016). Numerical and experimental characterization of multi-stage Savonius rotors. Energy, 114, 382‑404.
  16. Golecha, K., Eldho, T. I., & Prabhu, S. V. (2011). Influence of the deflector plate on the performance of modified Savonius water turbine. Applied Energy, 88(9), 3207‑3217.
  17. Grinspan, A. S., Kumar, P. S., Mahanta, P., Saha, U. K., Rao, D. R., & Bhanu, G. V. (2001). Design, development & testing of Savonius wind turbine rotor with twisted blades. Proceedings 28th National Conference on Fluid Mechanics and Fluid Power, Dec, 13‑15.
  18. Hayashi, T., Li, Y., & Hara, Y. (2005). Wind tunnel tests on a different phase three-stage Savonius rotor. JSME International Journal Series B Fluids and Thermal Engineering, 48(1), 9‑16.
  19. Johannes, S. S. (1929). Rotor adapted to be driven by wind or flowing water. Google Patents.
  20. Kacprzak, K., Liskiewicz, G., & Sobczak, K. (2013). Numerical investigation of conventional and modified Savonius wind turbines. Renewable energy, 60, 578‑585.
  21. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2008). Experimental investigations on single stage, two stage and three stage conventional Savonius rotor. International Journal of Energy Research, 32(10), 877‑895.
  22. Kamoji, M. A., Kedare, S. B., & Prabhu, S. V. (2009). Experimental investigations on single stage modified Savonius rotor. Applied Energy, 86(7‑8), 1064‑1073.
  23. Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19‑25.
  24. Mendoza, V., Katsidoniotaki, E., and Bernhoff, H. (2020). Numerical Study of a Novel Concept for Manufacturing Savonius Turbines with Twisted Blades. Energies 13, 1874.
  25. Menet, J.-L. (2004). A double-step Savonius rotor for local production of electricity : A design study. Renewable energy, 29(11), 1843‑1862.
  26. Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 32(8), 1598‑1605.
  27. Mojola, O. O. (1985). On the aerodynamic design of the Savonius windmill rotor. Journal of Wind Engineering and Industrial Aerodynamics, 21(2), 223‑231.
  28. Nugroho, A.D., Tjahjana, D.D.D.P., and Kristiawan, B. (2020). Slotted blade effect on Savonius wind rotor performance. In AIP Conference Proceedings, (AIP Publishing LLC), p. 030102.
  29. Ogawa, T., Yoshida, H., & Yokota, Y. (1989). Development of rotational speed control systems for a Savonius-type wind turbine. J. Fluids Eng. 111(1), 53-58
  30. Roy, S., & Saha, U. K. (2013a). Investigations on the effect of aspect ratio into the performance of Savonius rotors. ASME 2013 Gas Turbine India Conference.
  31. Roy, S., & Saha, U. K. (2013b). Review of experimental investigations into the design, performance and optimization of the Savonius rotor. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(4), 528‑542.
  32. Roy, S., & Saha, U. K. (2015). Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Applied Energy, 137, 117‑125.
  33. Saha, U. K., & Rajkumar, M. J. (2006). On the performance analysis of Savonius rotor with twisted blades. Renewable energy, 31(11), 1776‑1788.
  34. Saha, U. K., Thotla, S., & Maity, D. (2008). Optimum design configuration of Savonius rotor through wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 96(8‑9), 1359‑1375.
  35. Sanusi, A., Soeparman, S., Wahyudi, S., & Yuliati, L. (2016). Experimental study of combined blade savonius wind turbine. International Journal of Renewable Energy Research (IJRER), 6(2), 614‑619.
  36. Savonius, S. J. (1931). The S-rotor and its applications. Mechanical engineering, 53(5), 333‑338.
  37. Scheaua, F.D. (2020). Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type. Energies 13, 2311.
  38. Zemamou, M. abdelghani toumi, khalid mrigua, yahya lahlou, et mohammed aggour,(2020). A novel blade design for savonius wind turbine based on polynomial bezier curves for aerodynamic performance enhancement. Int. J. Green Energy, doi: 10.1080/15435075.2020.1779077.
  39. Zemamou, M., Toumi, A., Mrigua, K., & Aggour, M. (2019.). Modified Design of Savonius Wind Turbine Blade for Performance Improvement. International Journal of Innovative Technology and Exploring Engineering, 9(1),1432-1437.

No citation recorded.