Department of Electrical Power and Mechatronics, Tafila Technical University, Jordan
BibTex Citation Data :
@article{IJRED28076, author = {Qais Alsafasfeh}, title = {An Efficient Algorithm for Power Prediction in PV Generation System}, journal = {International Journal of Renewable Energy Development}, volume = {9}, number = {2}, year = {2020}, keywords = {Renewable energy; PV; optimization; chaotic feature extraction; DMCS-WNN}, abstract = { Aiming at the existing photovoltaic power generation prediction methods, the modeling is complicated, the prediction accuracy is low, and it is difficult to meet the actual needs. Based on the improvement of the traditional wavelet neural network, a dual-mode cuckoo search wavelet neural network algorithm combined prediction method is proposed, which takes into account the extraction of chaotic features of surface solar radiation and photovoltaic output power. The proposed algorithm first reconstructs the chaotic phase space of the hidden information of each influencing factor in the data history of PV generation and according to the correlation analysis, the solar radiation is utilized as additional input. Next, the proposed algorithm overcomes the limitations of the cuckoo search algorithm such as the sensitivity to the initial value and searchability and convergence speed by dual-mode cuckoo search wavelet neural network algorithm. Lastly, a prediction model of the proposed algorithm is proposed and the prediction analysis is performed under different weather conditions. Simulation results show that the proposed algorithm shows better performance than the existing algorithms under different weather conditions. Under various weather conditions, the mean values of T IC , E MAE and E NRMSE error indicators of the proposed forecasting algorithm were reduced by 43.70%, 45.75%, and 45.41%, respectively. Compared with the Chaos-WNN prediction method, the prediction performance has been further improved under various weather conditions and the mean values of T IC , E MAE and E NRMSE error indicators have been reduced by 25.55%, 27.26%, and 36.83%, respectively. }, pages = {207--216} doi = {10.14710/ijred.9.2.207-216}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/28076} }
Refworks Citation Data :
Aiming at the existing photovoltaic power generation prediction methods, the modeling is complicated, the prediction accuracy is low, and it is difficult to meet the actual needs. Based on the improvement of the traditional wavelet neural network, a dual-mode cuckoo search wavelet neural network algorithm combined prediction method is proposed, which takes into account the extraction of chaotic features of surface solar radiation and photovoltaic output power. The proposed algorithm first reconstructs the chaotic phase space of the hidden information of each influencing factor in the data history of PV generation and according to the correlation analysis, the solar radiation is utilized as additional input. Next, the proposed algorithm overcomes the limitations of the cuckoo search algorithm such as the sensitivity to the initial value and searchability and convergence speed by dual-mode cuckoo search wavelet neural network algorithm. Lastly, a prediction model of the proposed algorithm is proposed and the prediction analysis is performed under different weather conditions. Simulation results show that the proposed algorithm shows better performance than the existing algorithms under different weather conditions. Under various weather conditions, the mean values of TIC, EMAE and ENRMSE error indicators of the proposed forecasting algorithm were reduced by 43.70%, 45.75%, and 45.41%, respectively. Compared with the Chaos-WNN prediction method, the prediction performance has been further improved under various weather conditions and the mean values of TIC, EMAE and ENRMSE error indicators have been reduced by 25.55%, 27.26%, and 36.83%, respectively.
Article Metrics:
Last update:
An Optimal Approach for PV Power Optimization Based on Neural Network
A high accurate user-friendly energy audit platform of a university building using ANN Bayesian regularization and Levenberg-Marquardt algorithm
Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability
Last update: 2024-12-21 03:05:48
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.