skip to main content

The characteristic changes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment

Widya Fatriasari1 Wasrin Syafii2Nyoman J WistaraKhaswar Syamsu3Bambang Prasetya4

1R & D Units for Biomaterials LIPI, Indonesia

2Department of Forest Product Technology, Faculty of Forestry, Bogor Agricultural University, INDONESIA, Indonesia

3Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Indonesia

4 National Standardization Agency, Indonesia

View all affiliations
Published: 15 Jul 2014.
Editor(s): H Hadiyanto

Citation Format:
Abstract
The fungal pretreatment effect on chemical structural and morphological changes of Betung Bamboo was evaluated based on its biomass components after being cultivated by white rot fungi, Trametes versicolor. Betung bamboo powder (15 g) was exposed to liquid inoculum of white rot fungi and incubated at 270C for 15, 30 and 45 days. The treated samples were then characterized by FT-IR spectroscopy, X-Ray diffraction and SEM-EDS analyses. Cultivation for 30 days with 5 and 10% loadings retained greater selectivity compared to that of the other treatments. FTIR spectra demonstrated that the fungus affected the decreasing of functional group quantities without changing the functional groups. The decrease in intensity at wave number of 1246 cm-1 (guaiacyl of lignin) was greater than that at wave number of 1328 cm-1 (deformation combination of syringyl and xylan) after fungal treatment. X-ray analysis showed the pretreated samples had a higher crystallinity than the untreated ones which might be due to the cleavage of amorphous fractions of cellulose. The pretreated samples have more fragile than the untreated ones confirmed by SEM. Crystalline allomorph calculated by XRD analysis showed that fungus pretreatment for 30 days has transformed triclinic structure of cellulose to monoclinic structure.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Cover Letter and Suggested Reviewers
Subject Cover letter, Suggested Reviewers
Type Other
  Download (41KB)    Indexing metadata
Keywords: betung bamboo; fungal pretreatment;chemical component, incubation time and inoculum loading; structural and morphological changes
Funding: Ministry of Research and Technology (RISTEK)

Article Metrics:

  1. Ahtee, M., Hattula, T., Mangs, J., & Paakkari, T. (1988) An X-ray Diffraction Method for Determination of Crystallinity of Wood Pulp. Paperi Ja Puu, 8:475-480.Akhtar, M.,Scott, G.M., Swaney, R.E., & Kirk, T.K. (1998) Enzyme Applications in Fiber Processing, American Chemichal Society,Washington,DC
  2. Bohn, A., Fink, HP., Ganster, J., and Pinnow, M. (2000) X-Ray Texture Investigations of Bacterial Cellulose. Macromolecular Chemistry and Physic, 201:1913–1921
  3. Chang VS.,& Holtzapple, M.T. (2000) Fundamental Factors Affecting Bio-mass Enzymatic Reactivity. Appl Biochem Biotechnol, 84:5-37
  4. Cara,C., Ruiz, E., Oliva, J.M., Saez, F., Castro, E. (2008) Conversion of Olive Tree Biomass into Fermentable Sugars by Dilute Acid Pretreatment and Enzymatic Saccarification. Bioresource Technology, 99:1869-1876
  5. Cheng,D., Jiang, S.,& Zhang, Q. (2013) Effect of Hydrothermal Treatment with Different Aqueous Solutions on the Mold Resistance of Moso Bamboo with Chemical and FTIR Analysis BioResources 8(1):371-382
  6. Dransfield,S., & Widjaja, E.A. (1995) Plant Reseources of South-East Asia No.7.Bamboos, Leiden:Backhuys Publishers, pp.189
  7. Eriksson, K.E., Blanchette, R.A., Ander, P. (1990) Microbial and Enzymatic Degradation of Wood and Wood Components, 1st edition,Springer Verlag, New York
  8. Evans, R., Newman, R., & Roick, U. (1995) Changes in Cellulose Crystallinity during Kraft Pulping. Comparison of Infrared, X-ray Diffraction and Solid State NMR Results, Holzforschung,49:498–504
  9. Ferraz, A., Parra, C., Freer, J., Baeza, J., & Rodrı´guez, J. (2000) Characterization of White Zones Produced on pinus Radiata wood Chips by Ganoderma Australe and Ceriporiopsis Subvermispora,World Journal of Microbiology and Biotechnology,16:641–645
  10. Ferraz, A., Guerra,A., Mendoca, A.R., Masarin, F., Vicentim, M.P., Aguiar A., & Pavan, P.C. (2008) Technological Advances and Mechanistic Basis for Fungal Biopulping, Enzyme and Microbial Technology, 43:178-185
  11. Fatriasari, W., & Hermiati, E. (2008) Analisis Morfologi Serat dan Sifat Fisis-Kimia pada Enam Jenis Bambu sebagai Bahan Baku Pulp dan Kertas. Jurnal Ilmu dan Teknologi Hasil Hutan,1(2):67-72
  12. Fatriasari, W., Ermawar, R.A., Falah, F, Yanto, D.H.Y., Adi, D.T.N., Anita, S.H., & Hermiati, E. (2011) Kraft and Soda Pulping of White rot Pretreated Betung Bamboo, Jurnal Ilmu dan Teknologi Kayu Tropis, 9(1):42-55
  13. Focher, B., Pala, M.T., Canetti, M., Torri, G., Cosentino, C.,&Gastaldi, G. (2001) Structural Differences Between Non-Wood Plant Cellulose: Evidence from Solid State NMR, Vibrational Spectroscopy and X-Ray Diffractometry. Ind Crops Products,13:193-2008
  14. Fengel, D., & Wegener, G. (1989) Wood. Chemistry, ultrastructure, reactions, Walter de Gruyter,Berlin & New York
  15. Faix, O. (1991) Classification of Lignins from Different Botanical Origins by FT-IR Spectroscopy, Holzforchung,45:21–27
  16. Guillén, F., Muñoz, C., Gomez-Toribio, V., Martínez, AT., and Martínez, M.J. (2000) Oxygen Activation during Oxidation of Methoxyhydroquinones by Laccase from Pleurotus Eryngii, Appl. Environ. Microbiol.,66:170–175
  17. Gelbe, M., & Zacchi, G. (2007) Pretreatment of Lignocellulosic Materials for Efficient Bioethanol Production. Adv.Biochem.Eng./Biotechnol,108:41-65
  18. Giles, R.L., Galloway, E.R., Elliott, G.D., & Parrow, M.W. (2011) Oxygen Activation during Oxidation of Methoxyhydroquinones by Laccase from Pleurotus Eryngii. Bioresource Technology 102:8011-8016
  19. Gumuskaya,E., & Usta, M. (2002) Crystalline Structure Properties of Bleached and Unbleached Wheat Straw (Triticum aestivum L.) Soda-Oxygen Pulp.Turk J.Agric For, 26:247-252
  20. Gumuskaya, E., Usta, M., & Kirci, H. (2003) The Effects of Various Pulping Conditions on Crystalline Structure of Cellulose in Cotton Linters. Polymer Degradation and Stability, 81:559-564Messner, K., & Srebotnik, E. (1994) Biopulping: An Overview of Developments in An Environmentally Safe Paper Making Technology.FEMS Microbiology Reviews, 13:351-364
  21. Gumuskaya E, & Usta, M. (2006) Dependence of Chemical and Crystalline Structure of Alkali Sulfite Pulp on Cooking Temperature and Time. Carbohydrate Polymers, 65:461–468
  22. Gratani, L., Crescente, M.F.,Fabrini, L.G., and Digiulio, E. (2008) Growth Pattern and Photosynthetic Activity of Different Bamboo Species Growing in the Botanical Garden of Rome. Flora, 20:77-84
  23. Hakala T.K., Lundell, T., Galki,S., Maijala, P., Kalkkinen, N., &Hatakka, A. (2005) Manganese Peroxidases, Laccases and Oxalic Acid from the Selective White-Rot Fungus Physisporinus Rivulosus Grown On Spruce Wood Chips. Enzyme and Microbial Technolog, 36:461-468
  24. Hayashi,N., Ishihara,M., Sugiyama,J., & Okano,T. (1998a) The Enzymatic Susceptibility of Cellulose Microfibrils of the Algal-Bacterial Type and Cotton-Ramie Type, Carbohydrate Research,305:109-116
  25. Hayashi,N., Ishihara,M., Sugiyama,J., & Okano,T. (1998b) Selective Degradation of Cellulose Ia Component in Cladophora Cellulose with Trichoderma viride Cellulose, Carbohydrate Research,05:261-269
  26. Highley,T., Kirk,T.,Ibach, R. (1989) Properties of Cellulose Degraded by the Brown-Rot Fungus. International Research Group on Wood Preservation,Stockholm, Sweden
  27. Kleman-Leyer, K., Agosin, E., Conner, A.H., & Kirk,T.K (1992) Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi., Isroi, I., Millati, M.M., Syamsiah, R., Cahyanto, M.N.,Niklasson, C., & Taherzadeh, M.J (2012) Structural Changes of Oil Palm Empty Fruit Bunch (OPEFB) after Fungal and Phosphoric Acid Pretreatment, Molecules, 17:14995-15012
  28. Kant, P. (2010) Should Bamboos and Palms be Included in CDM Forestry Projects?, IGREC Working paper,No.IGREC-07:2010, Institute of Green Economy, New Delhi
  29. Kirk, T.K., & Chang, H-M. (1981) Potential Application of Bio-lignolytic Systems. Enzyme and Microbial Technology 3:189-196
  30. Li,X., Ximenes, E., Kim,Y., Slinger, M., Meilan,R., Ladisc, M.& Chapple,C. (2010) Lignin Monomer Composition Affects Arabidopsis Cell-Wall Degradability after Liquid Hot Water Pretreatment Biotechnology for Biofuels 3:27
  31. Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., & Nilvebrant, N. (1999) The Generation of Fermentation Inhibitors during Dilute Acid Hydrolysis of Softwood. Enzyme and Microbial Technology, 24:151–159
  32. Lobovikov, M., Paudel, S., Piazza, M., Ren, H., & Wu, J. (2007) World Bamboo Resources. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005.Non Wood Forest Products 18, Food and Agricultural Organization of the United Nations, Rome.pp. 73
  33. Mokushitsu Kagaku Jiken Manual (2000) Japan Wood Research Society Publisher
  34. Mosier, N., Wyman, C., Dale, B., Elander, R., Holtzapple, Y.Y.L.M., & Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol, 96:673-686
  35. Nasendi, B.D., (1995) Growth Pattern and Photosynthetic Activity of Different Bamboo Species Growing in The Botanical Garden of Rome. A paper prepared for IV-International Bamboo Congress/Research Workshop, 19-22 June 1995 in Ubud, Bali, Indonesia, Forest Products and Forestry Socio-Economic Research and Development Center, Bogor
  36. Nelson, M.L., & O’Connor, R.T. (1964) Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II J. Appl. Polym. Sci.8:1325-1341
  37. Nazarpour,F., Abdullah, D.K., Abdullah, N., & Zamiri, R. (2013) Evaluation of Biological Pretreatment of Rubberwood with White Rot Fungi for Enzymatic Hydrolysis, Materials 6:2059-2073
  38. Oh, S.Y., Yoo, D.I., Shin, Y., & Seo, G. (2005) FTIR Anaysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide Carbohydrate Research 340(3):417-428
  39. O’Sullivan (1997) A cellulose structure slowly unrevels, Cellulose 4:173-207
  40. Pandeya, K.K. and Pitman, A.J. (2003). FT IR Studies of the Changes in Wood Chemistry Flowing Decay by Brown-Rot and White-Rot Fungi. International Biodeterioration & Biodegradation, 52 :151-160
  41. Ramos, L.P. (2003) The Chemistry Involved in The Steam Treatment of Lignocellulosic Materials Quim Nova, 26:863-871
  42. Sassi, J-F., Tekely, P., & Chanzy, H. (2000) Relative Susceptibility of the Iα and Iβ Phases of Cellulose Towards Acetylation Cellulose,7:119-132
  43. Spiridon,I., Teaca, C-A., & Bodirlau, R. (2010) Structural Changes Evidenced by FTIR Spectroscopy in Cellulosic Materials after Pre-Treatment with Ionic Liquid and Enzymatic Hydrolysis BioResources 6(1):400-413
  44. Sun Y., & Cheng, J. (2002) Hydrolysis of Lignocellulosic Materials for Ethanol Production: A Review, Bioresource Technology, 83:1-11
  45. Scurlock, J.M.O., Dayton, D.C., and Hames, B. (2000) Bamboo: an Overlooked Biomass Resource?.Biomass and Bioenergy, 19:229–244
  46. Sathitsuksanoh, N., Zhu, Z., Templeton, N., Rollin, J., Harvey, S., & Zhang, Y.H.P. (2009) Saccarification of a Potential Bioenergy Crop, Phragmites australis (common reed), by Lignocellulose Fractionation Followed by Enzymatic Hydrolysis at Decreased Cellulose Loadings. Ind.Chem.Res., 48:6441-6447
  47. Sugiyama,J., Persson,J., & Chanzy, H. (1991) Combined Infrared and Electron Diffraction Study of the Polymorphism of Native Celluloses, Macromolecules,24:2461-2466
  48. Sassi, J-F., Tekely,P., & Chanzy,H. (2000) Relative susceptibility of the Iα and Iβ Phases of Cellulose Towards Acetylation Cellulose,7:119-132
  49. Široký, J., Blackburn,R.S., Bechtold,T., Taylor,J., & White,P. (2010) Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy Analysis of Crystallinity Changes in Lyocell Following Continuous Treatment with Sodium Hydroxide Cellulose,17:103-115
  50. Tanaka T., Fujita, M., Takeuchi, A., Suzuki,Y., Uesugi, K., Ito, K., Fujisawa, T., Doi, Y., & Iwata, T. (2006) Formation of Highly Ordered Structure in Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] High-Strength Fibers. Macromolecules, 39:2940–2946
  51. Taniguchi, M., Takahashi, D., Watanabe, D., Sakai, K., Hoshino,K., Kouya,T., & Tanaka, T. (2010) Effect of Steam Explosion Pretreatment on Treatment with Pleurotus Ostreatus for the Enzymatic Hydrolysis of Rice Straw, J. Biosci. Bioeng.,110: 449–452
  52. Verma, A., Kumar, S., Jain, P.K. (2011) Key Pretreatment Technologies on Cellulosic Ethanol Production. Journal of Scientific Research, 55:57-63
  53. Wistara, N., Zhang, X. J., & Young, R.A. (1999) Properties and treatments of pulps from recycled paper. Part II. Surface Properties and Crystallinity of Fibers and Fines Cellulose,6(4):325-348
  54. Widjaja, E.A., (2011) The Utilization of Bamboo: at Present and for The Future. Proceedings of International Seminar Strategies and Chalanges on Bamboo and Potential Non Timber Forest Products (NTFPs) Management and Utilization, Puslitbang Hasil Hutan, Bogor-Indonesia
  55. Wada, M., Okano,T., & Sugiyama, J. (2001) Allomorphs of Native Crystalline Cellulose I Evaluated by Two Equatorial d-Spacings J.Wood Science,47:124-128
  56. Wyman, C.E. (2007) What Is (and Is Not) Vital to Advancing Cellulosic Ethanol. Trends in Biotechnology 25(4):153-157
  57. Wan,C., & Li,Y. (2010) Microbial Pretreatment of Corn Stover with Ceriporiopsis subvermisphora for Enzymatic Hydrolysis and Ethanol Production. Bioresource Technology 101:6398-6403
  58. Wada, M., & Okano,T. (2001) Localization of Iα and Iβ Phases in Algal Cellulose Revealed by Acid Treatments, Cellulose 8:183-188
  59. Wang,L, Han,G. & Zhang,Y. (2007) Comparative Study of Composition, Structure and Properties of Apocynum Venetum Fibers under Different Pretreatments. Carbohydrate Polymers, 69(2):391-397
  60. Yu H, Guo G, Zhang, X., Yan K, & Xu C. (2009) The Effect of Biological Pretreatment with the Selective White-Rot Fungus Echinodontium Taxodii on Enzymatic Hydrolysis of Softwoods and Hardwoods, Bioresource Technol 100:5170-5175
  61. Zhang,Y.-H.P. (2008) Reviving the Carbohydrate Economy Via Multi-Product Biorefineries, J.Ind.Mucrobiol.Biotechnol.,5:367-375
  62. Zhao, H.K., Kwak, J.H., Wang, Y., Franz, J.A., White, J.M., & Holladay, J.E. (2006) Effects of Crystallinity on Dilute Acid Hydrolysis of Cellulose By Cellulose Ball-Milling Study. Energy & Fuels, 20(2):807-811
  63. Zhang, X., Xu, C., & Wang, H. (2007) Pretreatment of Bamboo Residues with Coriolus versicolor for Enzymatic Hydrolysis Journal of Bioscience and Bioengineering, 104 (2):149-151
  64. Zadrazil, F., Permana, I.G., & Carsten in der Wiesche (1999) Is the Conversion of Lignocellulosics into Feed with White Rot Fungi Realizable? Practical Problems of Scale Up and Technology Transfer. Mushroom Sci 15, Session: Sustainable Technology Development in Animal. Agriculture Institut für Pflanzenernährung und Bodenkunde, Bundesforschungsanstalt für Landwirtschaft,Bundesallee 50, 38116 Braunschweig, Germany, pp. 919-928

Last update: 2021-06-21 06:28:54

  1. Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification

    International Journal of Renewable Energy Development, 10 (2), 2020. doi: 10.14710/ijred.2021.32343
  2. Modification of Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Biomass as Potential Reinforcement for Composites Panel and Thermal Insulation Materials

    Nor Azlina Ramlee, Mohammad Jawaid, Edi Syams Zainudin, Shaikh Abdul Karim Yamani. Journal of Bionic Engineering, 16 (1), 2019. doi: 10.1007/s42235-019-0016-5
  3. Microwave Assisted-Acid Hydrolysis of Jabon Kraft Pulp

    Widya Fatriasari, Triyani Fajriutami, R. P. Budi Laksana, Nyoman J. Wistara. Waste and Biomass Valorization, 10 (6), 2019. doi: 10.1007/s12649-017-0182-9
  4. A review on natural fibers for development of eco-friendly bio-composite: characteristics, and utilizations

    Journal of Materials Research and Technology, 2021. doi: 10.1016/j.jmrt.2021.06.014
  5. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Nissa Nurfajrin Solihat, Triyani Fajriutami, Deddy Triyono Nugroho Adi, Widya Fatriasari, Euis Hermiati. AIP Conference Proceedings, 127 , 2017. doi: 10.1063/1.4973139

Last update: 2021-06-21 06:28:54

  1. Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment

    Solihat N.N.. Journal of Mathematical and Fundamental Sciences, 49 (3), 2017. doi: 10.5614/j.math.fund.sci.2017.49.3.3
  2. Fiber disruption of betung bamboo (Dendrocalamus asper) by combined fungal and microwave pretreatment

    Fatriasari W.. Biotropia, 22 (2), 2015. doi: 10.11598/btb.2015.22.2.363
  3. Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification

    International Journal of Renewable Energy Development, 10 (2), 2020. doi: 10.14710/ijred.2021.32343
  4. Effect of biological and liquid hot water pretreatments on ethanol yield from mengkuang (Pandanus artocarpus Griff)

    Yanti H.. Journal of the Korean Wood Science and Technology, 47 (2), 2019. doi: 10.5658/WOOD.2019.47.2.145
  5. Modification of Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Biomass as Potential Reinforcement for Composites Panel and Thermal Insulation Materials

    Nor Azlina Ramlee, Mohammad Jawaid, Edi Syams Zainudin, Shaikh Abdul Karim Yamani. Journal of Bionic Engineering, 16 (1), 2019. doi: 10.1007/s42235-019-0016-5
  6. Lignin and cellulose changes of betung bamboo (Dendrocalamus asper) pretreated microwave heating

    Fatriasari W.. International Journal on Advanced Science, Engineering and Information Technology, 6 (2), 2016. doi: 10.18517/ijaseit.6.2.688
  7. Characteristic lignocellulose of sago solid waste for biogas production

    Hammado N.. Journal of Applied Engineering Science, 18 (2), 2020. doi: 10.5937/jaes18-24711
  8. Microwave Assisted-Acid Hydrolysis of Jabon Kraft Pulp

    Widya Fatriasari, Triyani Fajriutami, R. P. Budi Laksana, Nyoman J. Wistara. Waste and Biomass Valorization, 10 (6), 2019. doi: 10.1007/s12649-017-0182-9
  9. Antimicrobial Imperata cylindrica paper coated with anionic nanocellulose crosslinked with cationic ions

    Zulfiana D.. International Journal of Biological Macromolecules, 127 , 2020. doi: 10.1016/j.ijbiomac.2020.07.102
  10. Reducing sugar production of sweet sorghum bagasse kraft pulp

    Nissa Nurfajrin Solihat, Triyani Fajriutami, Deddy Triyono Nugroho Adi, Widya Fatriasari, Euis Hermiati. AIP Conference Proceedings, 127 , 2017. doi: 10.1063/1.4973139
  11. Combination of biological and hydrothermal pretreatment of mixed rice biomass for fermentable sugars production

    Thing A.K.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/864/1/012170