skip to main content

Physicochemical Characterization of Native and Steam Explosion Pretreated Wild Sugarcane (Saccharum spontaneum)

1Department of Food Processing Technology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore - 641 114, India

2Department of Food Processing Technology, School of Agriculture and Biosciences Karunya Institute of Technology and Sciences Coimbatore - 641 114, India

Received: 22 Apr 2020; Revised: 19 Jun 2020; Accepted: 23 Jun 2020; Available online: 25 Jun 2020; Published: 15 Oct 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE) under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The technology of biomass conversion to bioethanol primarily based on pretreatment, enzymatic hydrolysis, and fermentation. This study was to investigate the effectiveness of the steam explosion pretreatment of Saccharum spontaneum L., which accomplishes the greater efficacy of physicochemical and structural properties. The collected plant material was processed and analyzed for ash, moisture, Carbon content, and other elements. The cellulose content of pretreated biomass was increased to 54.31% when compared to native wild sugarcane 41.23% due to the removal of lignin. SEM and FTIR results identified the changes in structural and functional groups also the BET analysis confirmed the increased surface area of Pretreated biomass is 55.541m²/g whereas the surface area of native biomass is 17.939 m²/g, this is due to the increase in pore volume and pore diameter of pretreated wild sugarcane which is 0.260 cc/g and 9.712 nm when compared to pore volume and Pore Diameter Dv(d) of raw material is 0.040 cc/g and 3.650 nm. XRD crystallinity pattern of pretreated wild sugarcane showed an increase in the crystallinity index due to the breakage of lignin during pretreatment. This comparative study has been carried out to know the effect of steam explosion pretreatment over the physicochemical composition and structural changes of wild sugarcane for sustainable bioethanol production. 

Fulltext View|Download
Keywords: Wild sugarcane; Steam explosion; Saccharum spontaneum; Native biomass; Cellulose; Bioethanol

Article Metrics:

  1. Alvira, P., Tomas-Pejo, E., Ballesteros ,M., Negro ,M.J., (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol.(101),4851–61. https://doi.org/10.1016/j.biortech.2009.11.093
  2. AOAC., (1990). Official methods of analysis of the Association of Official Analytical Chemists. https://doi.org/10.1002/0471740039.vec0284
  3. Chandel, A.K., Narasu, M.L., Chandrasekhar, G., Manikyam, A., Rao, L.V., (2009a). Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Bioresour. Technol. (100), 2404–2410. https://doi.org/10.1016/j.biortech.2008.11.014
  4. Chandel, A.K., Narasu, M.L., Rudravaram, R., Ravindra, P., Narasu, M.L., Rao, L.V., (2009b). Bioconversion of de-oiled rice bran (DORB) hemicellulosic hydrolysate into ethanol by Pichia stipitis NCIM3499 under optimized conditions. Int. J. Food Eng. (2), 1–12. https://doi.org/10.1515/energyo.0035.00001
  5. Chen, F., and Dixon, R.A., (2007). Lignin modification improves fermentable sugar yields for biofuel production. Nat. Biotechnol. (25), 759–761. https://doi.org/10.1038/nbt1316
  6. Chen, H.Z., Liu, L.Y., (2007a). Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction. Bioresour Technol. (98), 666–76. https://doi.org/10.1016/j.biortech.2006.02.029
  7. Chen, H.Z., Liu, L.Y., (2007b.) Technology of steam explosion: principle and application. Beijing: Chemical Industry Press
  8. Cosentino, S.L., Copani, V., D’Agosta, G.M., Mantineo, M., Litrico, A., (2006). Valutazione di germoplasma di specie del genere Miscanthus e Saccharum per la produzione di biomassa. Italus. Hortus. (13), 433–436 https://doi.org/10.3280/riv2018-071003
  9. Gupta, S., Madan, R.N., Bansal, M.C., (1987). Chemical composition of Pinus caribae hemicelluloses. J. Tappi. (70), 113–114. https://doi.org/10.2524/jtappij.41.867
  10. Hammond, B.W., (1998). Saccharum spontaneum (Gramineae) in Panama. J. Sust. Forest. (8), 23–38. https://doi.org/10.1300/j091v08n03_03
  11. Kaushik, A., Singh, M., (2011). Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization. Carbohydr. Res. 346(1), 76–85. https://doi.org/10.1016/j.carres.2010.10.020
  12. Kibami, D., Pongener, C., Rao, K.S., Sinha, D., (2017). Surface characterization and adsorption studies of Bambusa vulgaris-a low-cost adsorbent. J. Mater. Environ. Sci. 8(7), 2494–2505
  13. Kim, H.T., Kim, J.S., Sunwoo, C., Lee, Y.Y., (2003). Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. (90), 39–47. https://doi.org/10.1016/s0960-8524(03)00097-x
  14. Kim, H.T., Taylor, F., Hicks, K.B., (2008). Bioethanol production from barley hull using SAA (soaking in aqueous ammonia) pretreatment. Bioresour. Technol. (99), 5694– 5702. https://doi.org/10.1016/j.biortech.2007.10.055
  15. Lin, Y.S., Lee,W.C., Duan, K.J., Lin, Y.H., (2013). Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus, Appl. Energy (105). 389-394. https://doi.org/10.1016/j.apenergy.2012.12.020
  16. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y,Y., Holtzapple, M., et al., (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. (96), 673–86. https://doi.org/10.1016/j.biortech.2004.06.025
  17. Mosier, S.N., Ladisch, C.M., Ladisch, M.R., (2002). Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. (79), 610–618. https://doi.org/10.1002/bit.10316
  18. Norman, A.G., Jenkins, S.H., (1933). A new method for the determination of cellulose, based upon observations on the removal of lignin and other encrusting materials. Biochem. J. 27(3), 818–831. https://doi.org/10.1042/bj0270818
  19. O’dwyer, M.H., (1923). The hemicelluloses. III. The hemicellulose of American white oak. Biochem. J. 17(4–5), 501–509. https://doi.org/10.1042/bj0170501
  20. Pandey, A., Biswas, S., Sukumaran, R.K., Kaushik, N., (2009). Study on the Availability of Indian Biomass Resources for Exploitation: A Report Based on Nationwide Survey. TIFAC, New Delhi
  21. Raghavi, S., Sindhu, R., Binod, P., Gnansounou, E., Pandey, A., (2016). Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresour. Technol. (199),202–210. https://doi.org/10.1016/j.biortech.2015.08.062
  22. Ristolainen, M., Alen, R., Malkavaara, P., Pere, J.,(2002). Reflectance FTIR microspectroscopy for studying effect of xylan removal on unbleached and bleached birch kraft pulps. Holzforschung (56), 513–521. https://doi.org/10.1515/hf.2002.079
  23. Rocha, G.J.M., Martin, C., Soares, I.B., Souto-Maior, A.M., Baudel, H.M., Moraes, C.A., (2011). Dilute mixed-acid pretreatment of sugarcane bagasse for the ethanol production. Biomass Bioenerg. (35), 663-670. https://doi.org/10.1016/j.biombioe.2010.10.018
  24. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V., (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Proc. Biochem. (40), 3693–3700. https://doi.org/10.1016/j.procbio.2005.04.006
  25. Sastri, C.S.T., Kavathekar, K.Y., (1990). Plants for reclamation of wastelands. CSIR, New Delhi, India. pp. 360–362
  26. Scally, L., Hodkinson, T., Jones, M.B., (1997). Origin and taxonomy of Miscanthus. In: Jones, M.B., Walsh, N. (Ed.), Miscanthus for Energy and Fibre. Earthscan Publications Ltd., London, UK, pp. 1–45
  27. Scordia, D., Cosentino, S.L., Jeffries, T.W., (2010). Second-generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Bioresour. Technol. (101), 5358–5365. https://doi.org/10.1016/j.biortech.2010.02.036
  28. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M., (1959). An empirical method for estimating the degree of crystallinity of native cellulose using X-ray Diffractometer. J. Text. Res. (29), 786–794. https://doi.org/10.1177/004051755902901003
  29. Sindhu, R., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A., (2012). Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J. Microb. Biotechnol. (28),473-83. https://doi.org/10.1007/s11274-011-0838-8
  30. Sindhu, R., Kuttiraja, M., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A., (2011). Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresour. Technol. (102), 10915-21. https://doi.org/10.1016/j.biortech.2011.09.066
  31. Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R.K., Pandey, A., (2014). Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renew. Ener. (62), 362-368. https://doi.org/10.1016/j.renene.2013.07.041
  32. Sukumaran, R.K., Pandey, A., (2009). Ethanol from biomass. In: Biswas, S., Basak, P.R., Kaushik, N. (Eds.), Biomass and Bioproducts–Emerging trends. TIFAC, New Delhi, pp. 11–36
  33. Zhang, Q.Z., Cai, W.M., (2008). Enzymatic hydrolysis of alkali-pretreated rice straw by Trichoderma reesei ZM4-F3, Biomass Bioenergy 32 (12), 1130-1135. https://doi.org/10.1016/j.biombioe.2008.02.006

Last update:

  1. One pot consolidated bioprocess for conversion of Saccharum spontaneum biomass to ethanol-biofuel

    Surbhi Vaid, Surbhi Sharma, Harish Chander Dutt, Ritu Mahajan, Bijender Kumar Bajaj. Energy Conversion and Management, 250 , 2021. doi: 10.1016/j.enconman.2021.114880
  2. Steam explosion pretreatment coupling high-temperature short-time sterilization facilitating cellulose degradation and sporulation-regulatory gene expression in high-solid fermentation

    Chonglei Li, Xiaoyu Du, Zhi-Hua Liu, Bing-Zhi Li, Xianzhi Meng, Ji Zhao, Zhi-Min Zhao, Arthur J. Ragauskas. International Journal of Biological Macromolecules, 232 , 2023. doi: 10.1016/j.ijbiomac.2023.123475
  3. Screening of potential endoglucanases, hydrolysis conditions and different sugarcane straws pretreatments for cello-oligosaccharides production

    Fernando César Barbosa, Manoela Martins, Lívia Beatriz Brenelli, Felipe Augusto Ferrari, Marcus Bruno Soares Forte, Sarita Cândida Rabelo, Telma Teixeira Franco, Rosana Goldbeck. Bioresource Technology, 316 , 2020. doi: 10.1016/j.biortech.2020.123918
  4. Multi-Walled Carbon Nanotubes Improved Development during In Vitro Multiplication of Sugarcane (Saccharum spp.) in a Semi-Automated Bioreactor

    Monserrat Sorcia-Morales, Fernando Carlos Gómez-Merino, Lino Sánchez-Segura, José Luis Spinoso-Castillo, Jericó Jabín Bello-Bello. Plants, 10 (10), 2021. doi: 10.3390/plants10102015
  5. Facile pretreatment strategies to biotransform Kans grass into nanocatalyst, cellulolytic enzymes, and fermentable sugars towards sustainable biorefinery applications

    Preeti Singh, Neha Srivastava, Akbar Mohammad, Basant Lal, Rajeev Singh, Asad Syed, Abdallah M. Elgorban, Meenakshi Verma, P.K. Mishra, Vijai Kumar Gupta. Bioresource Technology, 386 , 2023. doi: 10.1016/j.biortech.2023.129491
  6. An Eco-Friendly Novel Approach for Bioconversion of Saccharum Spontaneum Biomass to Biofuel-Ethanol Under Consolidated Bioprocess

    Surbhi Vaid, Harish Chander Dutt, Ritu Mahajan, Bijender Bajaj. SSRN Electronic Journal , 2022. doi: 10.2139/ssrn.4163531
  7. Comparative techno-economic and energy analyses of integrated biorefinery processes of furfural and 5-hydroxymethylfurfural from biomass residue

    K. Wiranarongkorn, K. Im-orb, Y. Patcharavorachot, F. Maréchal, A. Arpornwichanop. Renewable and Sustainable Energy Reviews, 175 , 2023. doi: 10.1016/j.rser.2023.113146

Last update: 2025-01-20 08:22:29

No citation recorded.