skip to main content

Performance Analysis of Flat-Plate and V-groove Solar Air Heater Through CFD Simulation

1Faculty of Mechanical Engineering, Jimma Institute of Technology, Jimma University, Ethiopia

2Department of Mechanical Engineering, College of Engineering and Technology, Wolkite University, Ethiopia

Received: 14 Feb 2020; Revised: 11 May 2020; Accepted: 20 Jun 2020; Available online: 29 Jun 2020; Published: 15 Oct 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE) under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

The simplicity of solar flat plate air collector and free availability of solar energy sources attract attention to the optimization of the collector. This study aims to assess the effect of double pass air flow on the performance of flat plate air collectors. The analysis of the performance characteristics of the indirect solar dryer was carried out by CFD simulation with three different smooth, rough and V-grooved surfaces, keeping the lower and lateral collector well insulated and the drying chamber acting as a vertical chimney. The average thermal efficiency of the V-grooved surface, smooth surface, and rough surface is 90%, 78%, and 62% respectively. The total area of the collector is 1.20 × 2.0 = 2.40 m2 with the dimension of drying cabinet width, depth, and height 1200 × 650 × 1000 mm respectively. The pressure drop observed at the entrance to the drying chamber is high in the case of a smooth surface, medium in a rough surface and low in a V-grooved plate which will allow sufficient gas pressure to pass through completely.The air mass flow rate is the most important and effective factor during drying. The humidity of the air, as well as air velocity, is also an important factor in improving the drying rate. 

Fulltext View|Download
Keywords: CFD simulation; v-grooved surface; smooth surface; rough surface; double pass

Article Metrics:

  1. Abuşka, M., & Şevik, S. (2017). Energy, exergy, economic and environmental (4E) analyses of flat-plate and V-groove solar air collectors based on aluminium and copper. Solar Energy, 158(August), 259–277. https://doi.org/10.1016/j.solener.2017.09.045
  2. Afriyie, J. K., Nazha, M. A. A., Rajakaruna, H., & Forson, F. K. (2009). Experimental investigations of a chimney-dependent solar crop dryer. Renewable Energy, 34(1), 217–222. https://doi.org/10.1016/j.renene.2008.04.010
  3. Alam, T., & Kim, M. H. (2017). Performance improvement of double-pass solar air heater – A state of art of review. Renewable and Sustainable Energy Reviews, 79(May), 779–793. https://doi.org/10.1016/j.rser.2017.05.087
  4. Alam, T., Saini, R. P., & Saini, J. S. (2014). Experimental investigation on heat transfer enhancement due to V-shaped perforated blocks in a rectangular duct of solar air heater. Energy Conversion and Management, 81, 374–383. https://doi.org/10.1016/j.enconman.2014.02.044
  5. Ali Mohammed, B. T. (2014). Impact of Sun Drying Methods and Layer Thickness on the Quality of Highland Arabica Coffee Varieties at Limmu, Southwestern Ethiopia. Journal of Horticulture, 01(03), 547–554. https://doi.org/10.4172/2376-0354.1000117
  6. Aziz, A., Ur, S., & Rehman, S. U. (2016). Exergy Analysis of Solar Cabinet Dryer and Evaluate the Performance Enhancement of Solar Cabinet Dryer by Addition of Solar Reflectors. 6(4)
  7. Bolaji, B. O., & Olalusi, A. P. (2008). Performance Evaluation of a Mixed-Mode Solar Dryer. AU Journal of Technology, 11(4), 225–231. http://www.journal.au.edu/au_techno/2008/apr08/journal114_article05.pdf
  8. Burmester, K., & Eggers, R. (2010). Heat and mass transfer during the coffee drying process. Journal of Food Engineering, 99(4), 430–436. https://doi.org/10.1016/j.jfoodeng.2009.12.021
  9. Desisa, D. G., Ramayya, V., & Tiba, G. S. (2016). Development Research Product Development Through Cfd Simulation and Experimental Testing of a 200 Liter Biomass Fired Institutional Cook Stove
  10. El-Sebaii, A. A., Aboul-Enein, S., Ramadan, M. R. I., Shalaby, S. M., & Moharram, B. M. (2011). Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy, 36(2), 1076–1086. https://doi.org/10.1016/j.energy.2010.11.042
  11. Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., & Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews, 51, 1191–1204. https://doi.org/10.1016/j.rser.2015.07.026
  12. Gatea, A. A. (2011). Design and construction of a solar drying system, a cylindrical section and analysis of the performance of the thermal drying system. African Journal of Agricultural Research, 6(2), 343–351. https://doi.org/10.5897/AJAR10.347
  13. Gautz, L. D., Smith, V. E., & Bittenbender, H. C. (2008). Measuring Coffee Bean Moisture Content. Cooperative Extension Service, June, 2–4
  14. Grain crop drying , handling and storage. FAO.2011, Chapter 16
  15. Handoyo, E. A., Ichsani, D., Prabowo, & Sutardi. (2016). Numerical studies on the effect of delta-shaped obstacles’ spacing on the heat transfer and pressure drop in v-corrugated channel of solar air heater. Solar Energy, 131, 47–60. https://doi.org/10.1016/j.solener.2016.02.031
  16. Khatibi, A., Razi Astaraei, F., & Ahmadi, M. H. (2019). Generation and combination of the solar cells: A current model review. Energy Science and Engineering, 7(2), 305–322. https://doi.org/10.1002/ese3.292
  17. Koua, K. B., Fassinou, W. F., Gbaha, P., & Toure, S. (2009). Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy, 34(10), 1594–1602. https://doi.org/10.1016/j.energy.2009.07.005
  18. Kuhe, A., Ibrahim, J. S., Tuleun, L. T., & Akanji, S. A. (2019). Effect of air mass flow rate on the performance of a mixed-mode active solar crop dryer with a transpired air heater. International Journal of Ambient Energy, 0750. https://doi.org/10.1080/01430750.2019.1653970
  19. Kumar, R., Kumar, A., Chauhan, R., & Maithani, R. (2018). Comparative study of effect of various blockage arrangements on thermal hydraulic performance in a roughened air passage. Renewable and Sustainable Energy Reviews, 81(August 2017), 447–463. https://doi.org/10.1016/j.rser.2017.08.023
  20. Manjunath, M. S., Karanth, K. V., & Sharma, N. Y. (2018). Numerical investigation on heat transfer enhancement of solar air heater using sinusoidal corrugations on absorber plate. International Journal of Mechanical Sciences, 138–139, 219–228. https://doi.org/10.1016/j.ijmecsci.2018.01.037
  21. Musebe, R., Agwanda, C., & Mekonen, M. (2014). Primary coffee processing in Ethiopia : patterns , constrains and determinants Primary coffee processing in Ethiopia : patterns , constraints and determinants. January 2007
  22. Olia, H., Torabi, M., Bahiraei, M., Ahmadi, M. H., Goodarzi, M., & Safaei, M. R. (2019). Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: State-of-the-art. Applied Sciences (Switzerland), 9(3). https://doi.org/10.3390/app9030463
  23. Pakhare, V. V, & Salve, S. P. (2011). Design and Development of Solar Dryer Cabinet with Thermal Energy Storage for Drying Chilies. International Journal of Current Engineering and Technology, 5(5), 358–362. https://doi.org/10.14741/ijcet/22774106/spl.5.6.2016.67
  24. Priyam, A., & Chand, P. (2016). Thermal and thermohydraulic performance of wavy finned absorber solar air heater. Solar Energy, 130, 250–259. https://doi.org/10.1016/j.solener.2016.02.030
  25. Ramani, B. M., Gupta, A., & Kumar, R. (2010). Performance of a double pass solar air collector. Solar Energy, 84(11), 1929–1937. https://doi.org/10.1016/j.solener.2010.07.007
  26. Sadeghzadeh, M., Ahmadi, M. H., Kahani, M., Sakhaeinia, H., Chaji, H., & Chen, L. (2019). Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Science and Engineering, 7(5), 1649–1658. https://doi.org/10.1002/ese3.381
  27. Şevik, S. (2013). Design, experimental investigation and analysis of a solar drying system. Energy Conversion and Management, 68, 227–234. https://doi.org/10.1016/j.enconman.2013.01.013
  28. Shukla, A. P., Kushwaha, R., Gupta, B., & Bisen, A. (2018). Performance Analysis of Solar Air Heater using CFD Simulation. International Journal of Thermal Technologies, 8(01), 1771–1776. https://doi.org/10.14741/ijtt/v.8.1.2
  29. Tesema, S. (2014). Resource Assessment and Optimization Study of Efficient Type Hybrid Power System for Electrification of Rural District in Ethiopia. International Journal of Energy and Power Engineering, 3(6), 331. https://doi.org/10.11648/j.ijepe.20140306.16
  30. Tibebu, T. B., & Nkrumah, K. (2015). DESIGN , CONSTRUCTION AND EVALUATION OF PERFORMANCE OF SOLAR DRYER FOR DRYING FRUIT. September
  31. Tyagi, V. V., Panwar, N. L., Rahim, N. A., & Kothari, R. (2012). Review on solar air heating system with and without thermal energy storage system. Renewable and Sustainable Energy Reviews, 16(4), 2289–2303. https://doi.org/10.1016/j.rser.2011.12.005
  32. Yousef, B. A. A., & Adam, N. M. (2017). Performance analysis for flat plate collector with and without porous media. Journal of Energy in Southern Africa, 19(4), 32–42. https://doi.org/10.17159/2413-3051/2008/v19i4a3336
  33. Zulkifle, I., Alwaeli, A. H. A., Ruslan, M. H., Ibarahim, Z., Othman, M. Y. H., & Sopian, K. (2018). Numerical investigation of V-groove air-collector performance with changing cover in Bangi, Malaysia. Case Studies in Thermal Engineering, 12(July), 587–599. https://doi.org/10.1016/j.csite.2018.07.012

Last update:

  1. Proposing novel approach for indirect solar dryer integrated with active-fan and passive-chimney: An experimental and analytical investigation

    Mahmoud S. El-Sebaey. Energy, 304 , 2024. doi: 10.1016/j.energy.2024.132215
  2. Optimized solar food dryer with varied air heater designs

    Suha A. Mohammed, Wissam H. Alawee, Miqdam T. Chaichan, Amar S. Abdul-Zahra, Mohammed A. Fayad, Thaar M. Aljuwaya. Case Studies in Thermal Engineering, 53 , 2024. doi: 10.1016/j.csite.2023.103961
  3. Experimental and thermodynamic analysis of solar air dryer equipped with V-groove double pass collector: Techno-economic and exergetic measures

    Ali Hassan, Ali M. Nikbahkt, Zachary Welsh, Prasad Yarlagadda, Sabrina Fawzia, Azharul Karim. Energy Conversion and Management: X, 16 , 2022. doi: 10.1016/j.ecmx.2022.100296
  4. Numerical investigation of the effect of using louver baffles on thermal performance in solar air collectors

    Volkan Tuğan, Erdem Işık. Environmental Progress & Sustainable Energy, 42 (5), 2023. doi: 10.1002/ep.14128
  5. CFD analysis of the earth air pipe heat exchanger with helical geometry for optimum space utilisation

    Mahendra Kumar Verma, Vikas Bansal. International Journal of Ambient Energy, 44 (1), 2023. doi: 10.1080/01430750.2022.2120907
  6. Performance analysis of a solar heat collector through experimental and CFD investigation

    A.S.T. Tan, J. Janaun, H.J. Tham, N.J. Siambun, A. Abdullah. Materials Today: Proceedings, 57 , 2022. doi: 10.1016/j.matpr.2022.02.159
  7. Recent advancements in indirect solar dryer performance and the associated thermal energy storage.

    Gadisa Desa Shekata, Getachew Shunki Tibba, Aklilu Tesfamichael Baheta. Results in Engineering, 2024. doi: 10.1016/j.rineng.2024.102877
  8. Computational fluid dynamics analysis of flat plate type solar collector under different fin variables to enhance air-based heat transfer

    Maninder Singh, Rushikesh Sonawane, Manjeet Singh, Akash Gupta, Harjit Singh, Gurram Mourya Chandra Gupta, Madhusudhan Gollapudi, Abdur Rahman. World Journal of Engineering, 2024. doi: 10.1108/WJE-01-2024-0018
  9. Assessment of thermal and environmental benchmarking of a solar dryer as a pilot zero-emission drying technology

    Ali Hassan, Ali M. Nikbakht, Sabrina Fawzia, Prasad KDV. Yarlagadda, Azharul Karim. Case Studies in Thermal Engineering, 48 , 2023. doi: 10.1016/j.csite.2023.103084
  10. Numerical modelling and investigation of a wavy absorbent solar collector

    Salah M. Salih, Ahmed Hikmet Jassim, Jalal M. Jalil. INTERNATIONAL CONFERENCE ON ROBOTICS, AUTOMATION AND INTELLIGENT SYSTEMS (ICRAINS 21), 2670 , 2022. doi: 10.1063/5.0093114
  11. Recent advancements in indirect solar dryer performance and the associated thermal energy storage

    Gadisa Desa Shekata, Getachew Shunki Tibba, Aklilu Tesfamichael Baheta. Results in Engineering, 24 , 2024. doi: 10.1016/j.rineng.2024.102877
  12. Review of thermal performance enhancement of Solar Air Heater using shapes on absorber plate

    Visarion-Catalin Ifrim, Teodor Pop. 2022 International Conference on Development and Application Systems (DAS), 2022. doi: 10.1109/DAS54948.2022.9786124
  13. A Comprehensive Review of the Thermohydraulic Improvement Potentials in Solar Air Heaters through an Energy and Exergy Analysis

    Ali Hassan, Ali M. Nikbakht, Sabrina Fawzia, Prasad Yarlagadda, Azharul Karim. Energies, 17 (7), 2024. doi: 10.3390/en17071526
  14. Thermal Performance Analysis of a Double-Pass Solar Air Collector: A CFD Approach

    Irving A. Chávez-Bermúdez, Norma A. Rodríguez-Muñoz, Eduardo Venegas-Reyes, Loreto Valenzuela, Naghelli Ortega-Avila. Applied Sciences, 12 (23), 2022. doi: 10.3390/app122312199
  15. A review study on recent advances in solar drying: Mechanisms, challenges and perspectives

    Yi Yao, Yoong Xin Pang, Sivakumar Manickam, Edward Lester, Tao Wu, Cheng Heng Pang. Solar Energy Materials and Solar Cells, 248 , 2022. doi: 10.1016/j.solmat.2022.111979

Last update: 2024-12-02 20:31:39

No citation recorded.