skip to main content

Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant

1Study Program of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

2Study Program of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia

Received: 14 Dec 2019; Revised: 19 Mar 2020; Accepted: 25 May 2020; Available online: 27 May 2020; Published: 15 Jul 2020.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2020 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study evaluated thermodynamically the performance of conversion of palm kernel shells into combustible gas through gasification technology for aggregate heating in a hot-mixed asphalt production plant by developing a thermodynamic model using licensed Aspen Plus v.11 software. The effects of the equivalence ratio (ER) in the gasification process and the amount of combustion air to combustible gas to attain the required aggregate temperature were investigated. The thermodynamic model showed a good agreement with the experimental results based H2 and CO contain in producer gas which provided by maximum root mean square errors value of 8.82 and 6.42 respectively. Gasification of 30–35 kg of palm kernel shells in a fixed-bed gasifier reactor using air as a gasifying agent at an ER of 0.325–0.350 generated gaseous fuel for heating 1 ton of aggregate to a temperature of 180–200°C with combustion excess air 10%–20%. 
Fulltext View|Download
Keywords: thermodynamic study; gasification; palm kernel shell; aggregate; hot-mixed asphalt
Funding: The Indonesian Oil Palm Plantation Fund Management Agency

Article Metrics:

  1. Adnan, M. A., & Hossain, M. M. (2018). Co-gasification of Indonesian coal and microalgae – A thermodynamic study and performance evaluation. Chemical Engineering and Processing - Process Intensification, 128, 1-9. doi: 10.1016/j.cep.2018.04.002
  2. Adnan, M. A., Susanto, H., Binous, H., Muraza, O., & Hossain, M. M. (2017). Enhancement of hydrogen production in a modified moving bed downdraft gasifier – A thermodynamic study by including tar. International Journal of Hydrogen Energy, 42(16), 10971-10985. doi: 10.1016/j.ijhydene.2017.01.156
  3. Adnan, M. A., Xiong, Q., Hidayat, A., & Hossain, M. M. (2019). Gasification performance of Spirulina microalgae – A thermodynamic study with tar formation. Fuel, 241, 372-381. doi: 10.1016/j.fuel.2018.12.061
  4. Atnaw, S. M., Sulaiman, S. A., & Yusup, S. (2013). Syngas production from downdraft gasification of oil palm fronds. Energy, 61, 491-501. doi: 10.1016/j.energy.2013.09.039
  5. Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi: 10.1016/j.rser.2014.07.129
  6. Biagini, E., Barontini, F., & Tognotti, L. (2016). Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor. Bioresour Technol, 201, 156-165. doi: 10.1016/j.biortech.2015.11.057
  7. Chen, C., Jin, Y.-Q., Yan, J.-H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58-63. doi: 10.1016/j.fuel.2011.06.075
  8. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol, 101(11), 3816-3824. doi: 10.1016/j.biortech.2010.01.040
  9. Doherty, W., Reynolds, A., & Kennedy, D. (2009). The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy, 33(9), 1158-1167. doi: 10.1016/j.biombioe.2009.05.004
  10. Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., . . . Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316-321. doi: 10.1016/j.egypro.2017.03.146
  11. Febriansyah, H., Setiawan, A. A., Suryopratomo, K., & Setiawan, A. (2014). Gama Stove: Biomass Stove for Palm Kernel Shells in Indonesia. Energy Procedia, 47, 123-132. doi: 10.1016/j.egypro.2014.01.205
  12. Gai, C., & Dong, Y. (2012). Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy, 37(6), 4935-4944. doi: 10.1016/j.ijhydene.2011.12.031
  13. Galindo, A. L., Lora, E. S., Andrade, R. V., Giraldo, S. Y., Jaén, R. L., & Cobas, V. M. (2014). Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality. Biomass and Bioenergy, 61, 236-244. doi: 10.1016/j.biombioe.2013.12.017
  14. Gu, H., Tang, Y., Yao, J., & Chen, F. (2018). Study on biomass gasification under various operating conditions. Journal of the Energy Institute. doi: 10.1016/j.joei.2018.10.002
  15. Hannula, I., & Kurkela, E. (2012). A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass and Bioenergy, 38, 58-67. doi: 10.1016/j.biombioe.2011.02.045
  16. Husain, Z., Zainac, Z., & Abdullah, Z. (2002). Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass and Bioenergy, 22
  17. Hussain, M., Tufa, L. D., Azlan, R. N. A. B. R., Yusup, S., & Zabiri, H. (2016). Steady State Simulation Studies of Gasification System using Palm Kernel Shell. Procedia Engineering, 148, 1015-1021. doi: 10.1016/j.proeng.2016.06.523
  18. Indrawan, N., Thapa, S., Rahman, S. F., Park, J.-H., Park, S.-H., Wijaya, M. E., . . . Park, D.-H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology & Innovation, 7, 110-127. doi: 10.1016/j.eti.2017.01.001
  19. Jarungthammachote, S. (2019). Simplified Model for Estimations of Combustion Products, Adiabatic Flame Temperature and Properties of Burned Gas. Thermal Science and Engineering Progress, 100393. doi: 10.1016/j.tsep.2019.100393
  20. Jayah, T. H., Aye, L., Fuller, R. J., & Stewart, D. F. (2003). Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy, 25(4), 459-469. doi: 10.1016/s0961-9534(03)00037-0
  21. Ki, O. L., Kurniawan, A., Lin, C. X., Ju, Y. H., & Ismadji, S. (2013). Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol, 145, 157-161. doi: 10.1016/j.biortech.2013.01.122
  22. Kirsanovs, V., Blumberga, D., Karklina, K., Veidenbergs, I., Rochas, C., Vigants, E., & Vigants, G. (2017). Biomass Gasification for District Heating. Energy Procedia, 113, 217-223. doi: 10.1016/j.egypro.2017.04.057
  23. Kristjánsdóttir, Ó., Muench, S. T., Michael, L., & Burke, G. (2007). Assessing Potential for Warm-Mix Asphalt Technology Adoption. Transportation Research Record: Journal of the Transportation Research Board, 2040(1), 91-99. doi: 10.3141/2040-10
  24. Kuhe, A., & Aliyu, S. J. (2015). Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development (IJRED), 4(2), 125-130. doi: 10.14710/ijred.4.2.125-130
  25. Lee, J., Park, S., Seo, H., Kim, M., Kim, S., Chi, J., & Kim, K. (2012). Effects of burner type on a bench-scale entrained flow gasifier and conceptual modeling of the system with Aspen Plus. Korean Journal of Chemical Engineering, 29(5), 574-582. doi: 10.1007/s11814-011-0217-z
  26. Maneerung, T., Li, X., Li, C., Dai, Y., & Wang, C.-H. (2018). Integrated downdraft gasification with power generation system and gasification bottom ash reutilization for clean waste-to-energy and resource recovery system. Journal of Cleaner Production, 188, 69-79. doi: 10.1016/j.jclepro.2018.03.287
  27. Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733-740. doi: 10.1016/j.rser.2015.09.032
  28. Omar, M. M., Munir, A., Ahmad, M., & Tanveer, A. (2018). Downdraft gasifier structure and process improvement for high quality and quantity producer gas production. Journal of the Energy Institute, 91(6), 1034-1044. doi: 10.1016/j.joei.2017.07.005
  29. Peinado, D., de Vega, M., García-Hernando, N., & Marugán-Cruz, C. (2011). Energy and exergy analysis in an asphalt plant’s rotary dryer. Applied Thermal Engineering, 31(6-7), 1039-1049. doi: 10.1016/j.applthermaleng.2010.11.029
  30. Puig-Gamero, M., Argudo-Santamaria, J., Valverde, J. L., Sánchez, P., & Sanchez-Silva, L. (2018). Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis. Energy Conversion and Management, 177, 416-427. doi: 10.1016/j.enconman.2018.09.088
  31. Silitonga, A. S., Atabani, A. E., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Mekhilef, S. (2011). A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews, 15(8), 3733-3756. doi: 10.1016/j.rser.2011.07.011
  32. Svishchev, D. A., Kozlov, A. N., Donskoy, I. G., & Ryzhkov, A. F. (2016). A semi-empirical approach to the thermodynamic analysis of downdraft gasification. Fuel, 168, 91-106. doi: 10.1016/j.fuel.2015.11.066
  33. Upadhyay, D. S., Sakhiya, A. K., Panchal, K., Patel, A. H., & Patel, R. N. (2019). Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach. Energy, 168, 833-846. doi: 10.1016/j.energy.2018.11.133
  34. Wirawan, S. S. (2007). Electricity generation opportunities from palm oil mills in Indonesia. Presented at the 4th Biomass-Asia Workshop, Kuala Lumpur, Malaysia
  35. Yetkin, Y., Mansour, S., & Thomas, W. K. (2000). Mixing and compaction temperature for hot mixed asphalt concrete. Research Report Number 1250-5
  36. Żogała, A. (2014). Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies. Journal of Sustainable Mining, 13(1), 22-28. doi: 10.7424/jsm140105

Last update:

  1. Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier

    Abeth Novria Sonjaya, Kania Safitri, Adi Surjosatyo. International Journal of Renewable Energy Development, 12 (1), 2023. doi: 10.14710/ijred.2023.46068
  2. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review

    Yan Yang, Rock Keey Liew, Arularasu Muthaliar Tamothran, Shin Ying Foong, Peter Nai Yuh Yek, Poh Wai Chia, Thuan Van Tran, Wanxi Peng, Su Shiung Lam. Environmental Chemistry Letters, 19 (3), 2021. doi: 10.1007/s10311-020-01177-5
  3. The Use of Energy in The Production Process of Hot Mix Asphalt in Asphalt Mixing Plant (AMP)

    A, S Atmaja, A. Setyawan, S.H. Pranolo, Djumari. Journal of Physics: Conference Series, 1912 (1), 2021. doi: 10.1088/1742-6596/1912/1/012060
  4. Critical review on technological advancements for effective waste management of municipal solid waste - Updates and way forward

    Environmental Technology & Innovation, 2021. doi: 10.1016/j.eti.2021.101749
  5. Critical review on technological advancements for effective waste management of municipal solid waste — Updates and way forward

    Priya Prajapati, Sunita Varjani, Reeta Rani Singhania, Anil Kumar Patel, Mukesh Kumar Awasthi, Raveendran Sindhu, Zengqiang Zhang, Parameswaran Binod, Sanjeev Kumar Awasthi, Preeti Chaturvedi. Environmental Technology & Innovation, 23 , 2021. doi: 10.1016/j.eti.2021.101749
  6. Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence

    Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 2292 , 2020. doi: 10.1063/5.0030627
  7. Municipal solid waste management: Dynamics, risk assessment, ecological influence, advancements, constraints and perspectives

    Shaili Vyas, Priya Prajapati, Anil V. Shah, Sunita Varjani. Science of The Total Environment, 814 , 2022. doi: 10.1016/j.scitotenv.2021.152802
  8. Investigation of Process Parameters Influence on Municipal Solid Waste Gasification with CO2 Capture via Process Simulation Approach

    Fadilla Noor Rahma, Cholila Tamzysi, Arif Hidayat, Muflih Arisa Adnan. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.31982
  9. Potentials of palm kernel shell derivatives: a critical review on waste recovery for environmental sustainability

    Ifeanyi Uchegbulam, Emmanuel Owoichoechi Momoh, Solomon A. Agan. Cleaner Materials, 6 , 2022. doi: 10.1016/j.clema.2022.100154
  10. An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends

    Viet Dung Tran, Anh Tuan Le, Anh Tuan Hoang. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34022
  11. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier

    Thanh Xuan Nguyen-Thi, Thi Minh Tu Bui, Van Ga Bui. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.53994
  12. Utilization of Modified Zeolite as Catalyst for Steam Gasification of Palm Kernel Shell

    Joko Waluyo, Petric Marc Ruya, Dwi Hantoko, Jenny Rizkiana, I.G.B.N. Makertihartha, Mi Yan, Herri Susanto. Bulletin of Chemical Reaction Engineering & Catalysis, 16 (3), 2021. doi: 10.9767/bcrec.16.3.10837.623-631
  13. A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations

    Nidhi Kundariya, Swayansu Sabyasachi Mohanty, Sunita Varjani, Huu Hao Ngo, Jonathan W. C. Wong, Mohammad J. Taherzadeh, Jo-Shu Chang, How Yong Ng, Sang-Hyoun Kim, Xuan-Thanh Bui. Bioresource Technology, 342 , 2021. doi: 10.1016/j.biortech.2021.125982
  14. Waste to energy: An experimental study on hydrogen production from food waste gasification

    Ashok Kumar Koshariya, M. Sivaram Krishnan, S. Jaisankar, Ganesh Babu Loganathan, T. Sathish, Ümit Ağbulut, R. Saravanan, Le Thanh Tuan, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 54 , 2024. doi: 10.1016/j.ijhydene.2023.05.221
  15. Tricks and tracks in waste management with a special focus on municipal landfill leachate: Leads and obstacles

    Swayansu Sabyasachi Mohanty, Shaili Vyas, Yamini Koul, Priya Prajapati, Sunita Varjani, Jo-Shu Chang, Muhammad Bilal, Konstantinos Moustakas, Pau Loke Show, Meththika Vithanage. Science of The Total Environment, 860 , 2023. doi: 10.1016/j.scitotenv.2022.160377
  16. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 54 , 2024. doi: 10.1016/j.ijhydene.2023.05.049

Last update: 2024-06-29 15:26:26

  1. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review

    Yan Yang, Rock Keey Liew, Arularasu Muthaliar Tamothran, Shin Ying Foong, Peter Nai Yuh Yek, Poh Wai Chia, Thuan Van Tran, Wanxi Peng, Su Shiung Lam. Environmental Chemistry Letters, 19 (3), 2021. doi: 10.1007/s10311-020-01177-5
  2. Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence

    Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 2292 , 2020. doi: 10.1063/5.0030627
  3. Experimental Study on Impact of Thermal-Assisted Machining on SKD11 Steel Machinability

    Hoang L.V.. International Journal on Advanced Science, Engineering and Information Technology, 10 (5), 2020. doi: 10.18517/ijaseit.10.5.13336
  4. An Experimental Study on the Performance Characteristics of a Diesel Engine Fueled with ULSD-Biodiesel Blends

    Viet Dung Tran, Anh Tuan Le, Anh Tuan Hoang. International Journal of Renewable Energy Development, 10 (2), 2021. doi: 10.14710/ijred.2021.34022
  5. Investigation of process parameters influence on municipal solid waste gasification with co2 capture via process simulation approach

    Rahma F.N.. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.31982
  6. A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends

    Chau M.Q.. International Journal on Advanced Science, Engineering and Information Technology, 10 (5), 2020. doi: 10.18517/ijaseit.10.5.13051