Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant

Firman Asto Putro  -  Study Program of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
*Sunu Herwi Pranolo scopus  -  Study Program of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
Joko Waluyo  -  Study Program of Chemical Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
Ary Setyawan  -  Study Program of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
Received: 14 Dec 2019; Revised: 19 Mar 2020; Accepted: 25 May 2020; Published: 15 Jul 2020; Available online: 27 May 2020.
Open Access Copyright (c) 2020 International Journal of Renewable Energy Development
License URL:

Citation Format:
Article Info
Section: Original Research Article
Language: EN
Statistics: 320 89
This study evaluated thermodynamically the performance of conversion of palm kernel shells into combustible gas through gasification technology for aggregate heating in a hot-mixed asphalt production plant by developing a thermodynamic model using licensed Aspen Plus v.11 software. The effects of the equivalence ratio (ER) in the gasification process and the amount of combustion air to combustible gas to attain the required aggregate temperature were investigated. The thermodynamic model showed a good agreement with the experimental results based H2 and CO contain in producer gas which provided by maximum root mean square errors value of 8.82 and 6.42 respectively. Gasification of 30–35 kg of palm kernel shells in a fixed-bed gasifier reactor using air as a gasifying agent at an ER of 0.325–0.350 generated gaseous fuel for heating 1 ton of aggregate to a temperature of 180–200°C with combustion excess air 10%–20%. ©2020. CBIORE-IJRED. All rights reserved
Keywords: thermodynamic study; gasification; palm kernel shell; aggregate; hot-mixed asphalt

Article Metrics:

  1. Adnan, M. A., & Hossain, M. M. (2018). Co-gasification of Indonesian coal and microalgae – A thermodynamic study and performance evaluation. Chemical Engineering and Processing - Process Intensification, 128, 1-9. doi: 10.1016/j.cep.2018.04.002
  2. Adnan, M. A., Susanto, H., Binous, H., Muraza, O., & Hossain, M. M. (2017). Enhancement of hydrogen production in a modified moving bed downdraft gasifier – A thermodynamic study by including tar. International Journal of Hydrogen Energy, 42(16), 10971-10985. doi: 10.1016/j.ijhydene.2017.01.156
  3. Adnan, M. A., Xiong, Q., Hidayat, A., & Hossain, M. M. (2019). Gasification performance of Spirulina microalgae – A thermodynamic study with tar formation. Fuel, 241, 372-381. doi: 10.1016/j.fuel.2018.12.061
  4. Atnaw, S. M., Sulaiman, S. A., & Yusup, S. (2013). Syngas production from downdraft gasification of oil palm fronds. Energy, 61, 491-501. doi: 10.1016/
  5. Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi: 10.1016/j.rser.2014.07.129
  6. Biagini, E., Barontini, F., & Tognotti, L. (2016). Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor. Bioresour Technol, 201, 156-165. doi: 10.1016/j.biortech.2015.11.057
  7. Chen, C., Jin, Y.-Q., Yan, J.-H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58-63. doi: 10.1016/j.fuel.2011.06.075
  8. Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol, 101(11), 3816-3824. doi: 10.1016/j.biortech.2010.01.040
  9. Doherty, W., Reynolds, A., & Kennedy, D. (2009). The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy, 33(9), 1158-1167. doi: 10.1016/j.biombioe.2009.05.004
  10. Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., . . . Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316-321. doi: 10.1016/j.egypro.2017.03.146
  11. Febriansyah, H., Setiawan, A. A., Suryopratomo, K., & Setiawan, A. (2014). Gama Stove: Biomass Stove for Palm Kernel Shells in Indonesia. Energy Procedia, 47, 123-132. doi: 10.1016/j.egypro.2014.01.205
  12. Gai, C., & Dong, Y. (2012). Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy, 37(6), 4935-4944. doi: 10.1016/j.ijhydene.2011.12.031
  13. Galindo, A. L., Lora, E. S., Andrade, R. V., Giraldo, S. Y., Jaén, R. L., & Cobas, V. M. (2014). Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality. Biomass and Bioenergy, 61, 236-244. doi: 10.1016/j.biombioe.2013.12.017
  14. Gu, H., Tang, Y., Yao, J., & Chen, F. (2018). Study on biomass gasification under various operating conditions. Journal of the Energy Institute. doi: 10.1016/j.joei.2018.10.002
  15. Hannula, I., & Kurkela, E. (2012). A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass and Bioenergy, 38, 58-67. doi: 10.1016/j.biombioe.2011.02.045
  16. Husain, Z., Zainac, Z., & Abdullah, Z. (2002). Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass and Bioenergy, 22.
  17. Hussain, M., Tufa, L. D., Azlan, R. N. A. B. R., Yusup, S., & Zabiri, H. (2016). Steady State Simulation Studies of Gasification System using Palm Kernel Shell. Procedia Engineering, 148, 1015-1021. doi: 10.1016/j.proeng.2016.06.523
  18. Indrawan, N., Thapa, S., Rahman, S. F., Park, J.-H., Park, S.-H., Wijaya, M. E., . . . Park, D.-H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology & Innovation, 7, 110-127. doi: 10.1016/j.eti.2017.01.001
  19. Jarungthammachote, S. (2019). Simplified Model for Estimations of Combustion Products, Adiabatic Flame Temperature and Properties of Burned Gas. Thermal Science and Engineering Progress, 100393. doi: 10.1016/j.tsep.2019.100393
  20. Jayah, T. H., Aye, L., Fuller, R. J., & Stewart, D. F. (2003). Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy, 25(4), 459-469. doi: 10.1016/s0961-9534(03)00037-0
  21. Ki, O. L., Kurniawan, A., Lin, C. X., Ju, Y. H., & Ismadji, S. (2013). Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol, 145, 157-161. doi: 10.1016/j.biortech.2013.01.122
  22. Kirsanovs, V., Blumberga, D., Karklina, K., Veidenbergs, I., Rochas, C., Vigants, E., & Vigants, G. (2017). Biomass Gasification for District Heating. Energy Procedia, 113, 217-223. doi: 10.1016/j.egypro.2017.04.057
  23. Kristjánsdóttir, Ó., Muench, S. T., Michael, L., & Burke, G. (2007). Assessing Potential for Warm-Mix Asphalt Technology Adoption. Transportation Research Record: Journal of the Transportation Research Board, 2040(1), 91-99. doi: 10.3141/2040-10
  24. Kuhe, A., & Aliyu, S. J. (2015). Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development (IJRED), 4(2), 125-130. doi: 10.14710/ijred.4.2.125-130
  25. Lee, J., Park, S., Seo, H., Kim, M., Kim, S., Chi, J., & Kim, K. (2012). Effects of burner type on a bench-scale entrained flow gasifier and conceptual modeling of the system with Aspen Plus. Korean Journal of Chemical Engineering, 29(5), 574-582. doi: 10.1007/s11814-011-0217-z
  26. Maneerung, T., Li, X., Li, C., Dai, Y., & Wang, C.-H. (2018). Integrated downdraft gasification with power generation system and gasification bottom ash reutilization for clean waste-to-energy and resource recovery system. Journal of Cleaner Production, 188, 69-79. doi: 10.1016/j.jclepro.2018.03.287
  27. Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733-740. doi: 10.1016/j.rser.2015.09.032
  28. Omar, M. M., Munir, A., Ahmad, M., & Tanveer, A. (2018). Downdraft gasifier structure and process improvement for high quality and quantity producer gas production. Journal of the Energy Institute, 91(6), 1034-1044. doi: 10.1016/j.joei.2017.07.005
  29. Peinado, D., de Vega, M., García-Hernando, N., & Marugán-Cruz, C. (2011). Energy and exergy analysis in an asphalt plant’s rotary dryer. Applied Thermal Engineering, 31(6-7), 1039-1049. doi: 10.1016/j.applthermaleng.2010.11.029
  30. Puig-Gamero, M., Argudo-Santamaria, J., Valverde, J. L., Sánchez, P., & Sanchez-Silva, L. (2018). Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis. Energy Conversion and Management, 177, 416-427. doi: 10.1016/j.enconman.2018.09.088
  31. Silitonga, A. S., Atabani, A. E., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Mekhilef, S. (2011). A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews, 15(8), 3733-3756. doi: 10.1016/j.rser.2011.07.011
  32. Svishchev, D. A., Kozlov, A. N., Donskoy, I. G., & Ryzhkov, A. F. (2016). A semi-empirical approach to the thermodynamic analysis of downdraft gasification. Fuel, 168, 91-106. doi: 10.1016/j.fuel.2015.11.066
  33. Upadhyay, D. S., Sakhiya, A. K., Panchal, K., Patel, A. H., & Patel, R. N. (2019). Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach. Energy, 168, 833-846. doi: 10.1016/
  34. Wirawan, S. S. (2007). Electricity generation opportunities from palm oil mills in Indonesia. Presented at the 4th Biomass-Asia Workshop, Kuala Lumpur, Malaysia.
  35. Yetkin, Y., Mansour, S., & Thomas, W. K. (2000). Mixing and compaction temperature for hot mixed asphalt concrete. Research Report Number 1250-5.
  36. Żogała, A. (2014). Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies. Journal of Sustainable Mining, 13(1), 22-28. doi: 10.7424/jsm140105

No citation recorded.