Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant


Article Metrics:
- Adnan, M. A., & Hossain, M. M. (2018). Co-gasification of Indonesian coal and microalgae – A thermodynamic study and performance evaluation. Chemical Engineering and Processing - Process Intensification, 128, 1-9. doi: 10.1016/j.cep.2018.04.002
- Adnan, M. A., Susanto, H., Binous, H., Muraza, O., & Hossain, M. M. (2017). Enhancement of hydrogen production in a modified moving bed downdraft gasifier – A thermodynamic study by including tar. International Journal of Hydrogen Energy, 42(16), 10971-10985. doi: 10.1016/j.ijhydene.2017.01.156
- Adnan, M. A., Xiong, Q., Hidayat, A., & Hossain, M. M. (2019). Gasification performance of Spirulina microalgae – A thermodynamic study with tar formation. Fuel, 241, 372-381. doi: 10.1016/j.fuel.2018.12.061
- Atnaw, S. M., Sulaiman, S. A., & Yusup, S. (2013). Syngas production from downdraft gasification of oil palm fronds. Energy, 61, 491-501. doi: 10.1016/j.energy.2013.09.039
- Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815. doi: 10.1016/j.rser.2014.07.129
- Biagini, E., Barontini, F., & Tognotti, L. (2016). Development of a bi-equilibrium model for biomass gasification in a downdraft bed reactor. Bioresour Technol, 201, 156-165. doi: 10.1016/j.biortech.2015.11.057
- Chen, C., Jin, Y.-Q., Yan, J.-H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58-63. doi: 10.1016/j.fuel.2011.06.075
- Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol, 101(11), 3816-3824. doi: 10.1016/j.biortech.2010.01.040
- Doherty, W., Reynolds, A., & Kennedy, D. (2009). The effect of air preheating in a biomass CFB gasifier using ASPEN Plus simulation. Biomass and Bioenergy, 33(9), 1158-1167. doi: 10.1016/j.biombioe.2009.05.004
- Erinofiardi, Gokhale, P., Date, A., Akbarzadeh, A., Bismantolo, P., Suryono, A. F., . . . Nuramal, A. (2017). A Review on Micro Hydropower in Indonesia. Energy Procedia, 110, 316-321. doi: 10.1016/j.egypro.2017.03.146
- Febriansyah, H., Setiawan, A. A., Suryopratomo, K., & Setiawan, A. (2014). Gama Stove: Biomass Stove for Palm Kernel Shells in Indonesia. Energy Procedia, 47, 123-132. doi: 10.1016/j.egypro.2014.01.205
- Gai, C., & Dong, Y. (2012). Experimental study on non-woody biomass gasification in a downdraft gasifier. International Journal of Hydrogen Energy, 37(6), 4935-4944. doi: 10.1016/j.ijhydene.2011.12.031
- Galindo, A. L., Lora, E. S., Andrade, R. V., Giraldo, S. Y., Jaén, R. L., & Cobas, V. M. (2014). Biomass gasification in a downdraft gasifier with a two-stage air supply: Effect of operating conditions on gas quality. Biomass and Bioenergy, 61, 236-244. doi: 10.1016/j.biombioe.2013.12.017
- Gu, H., Tang, Y., Yao, J., & Chen, F. (2018). Study on biomass gasification under various operating conditions. Journal of the Energy Institute. doi: 10.1016/j.joei.2018.10.002
- Hannula, I., & Kurkela, E. (2012). A parametric modelling study for pressurised steam/O2-blown fluidised-bed gasification of wood with catalytic reforming. Biomass and Bioenergy, 38, 58-67. doi: 10.1016/j.biombioe.2011.02.045
- Husain, Z., Zainac, Z., & Abdullah, Z. (2002). Briquetting of palm fibre and shell from the processing of palm nuts to palm oil. Biomass and Bioenergy, 22
- Hussain, M., Tufa, L. D., Azlan, R. N. A. B. R., Yusup, S., & Zabiri, H. (2016). Steady State Simulation Studies of Gasification System using Palm Kernel Shell. Procedia Engineering, 148, 1015-1021. doi: 10.1016/j.proeng.2016.06.523
- Indrawan, N., Thapa, S., Rahman, S. F., Park, J.-H., Park, S.-H., Wijaya, M. E., . . . Park, D.-H. (2017). Palm biodiesel prospect in the Indonesian power sector. Environmental Technology & Innovation, 7, 110-127. doi: 10.1016/j.eti.2017.01.001
- Jarungthammachote, S. (2019). Simplified Model for Estimations of Combustion Products, Adiabatic Flame Temperature and Properties of Burned Gas. Thermal Science and Engineering Progress, 100393. doi: 10.1016/j.tsep.2019.100393
- Jayah, T. H., Aye, L., Fuller, R. J., & Stewart, D. F. (2003). Computer simulation of a downdraft wood gasifier for tea drying. Biomass and Bioenergy, 25(4), 459-469. doi: 10.1016/s0961-9534(03)00037-0
- Ki, O. L., Kurniawan, A., Lin, C. X., Ju, Y. H., & Ismadji, S. (2013). Bio-oil from cassava peel: a potential renewable energy source. Bioresour Technol, 145, 157-161. doi: 10.1016/j.biortech.2013.01.122
- Kirsanovs, V., Blumberga, D., Karklina, K., Veidenbergs, I., Rochas, C., Vigants, E., & Vigants, G. (2017). Biomass Gasification for District Heating. Energy Procedia, 113, 217-223. doi: 10.1016/j.egypro.2017.04.057
- Kristjánsdóttir, Ó., Muench, S. T., Michael, L., & Burke, G. (2007). Assessing Potential for Warm-Mix Asphalt Technology Adoption. Transportation Research Record: Journal of the Transportation Research Board, 2040(1), 91-99. doi: 10.3141/2040-10
- Kuhe, A., & Aliyu, S. J. (2015). Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier. International Journal of Renewable Energy Development (IJRED), 4(2), 125-130. doi: 10.14710/ijred.4.2.125-130
- Lee, J., Park, S., Seo, H., Kim, M., Kim, S., Chi, J., & Kim, K. (2012). Effects of burner type on a bench-scale entrained flow gasifier and conceptual modeling of the system with Aspen Plus. Korean Journal of Chemical Engineering, 29(5), 574-582. doi: 10.1007/s11814-011-0217-z
- Maneerung, T., Li, X., Li, C., Dai, Y., & Wang, C.-H. (2018). Integrated downdraft gasification with power generation system and gasification bottom ash reutilization for clean waste-to-energy and resource recovery system. Journal of Cleaner Production, 188, 69-79. doi: 10.1016/j.jclepro.2018.03.287
- Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. Renewable and Sustainable Energy Reviews, 53, 733-740. doi: 10.1016/j.rser.2015.09.032
- Omar, M. M., Munir, A., Ahmad, M., & Tanveer, A. (2018). Downdraft gasifier structure and process improvement for high quality and quantity producer gas production. Journal of the Energy Institute, 91(6), 1034-1044. doi: 10.1016/j.joei.2017.07.005
- Peinado, D., de Vega, M., García-Hernando, N., & Marugán-Cruz, C. (2011). Energy and exergy analysis in an asphalt plant’s rotary dryer. Applied Thermal Engineering, 31(6-7), 1039-1049. doi: 10.1016/j.applthermaleng.2010.11.029
- Puig-Gamero, M., Argudo-Santamaria, J., Valverde, J. L., Sánchez, P., & Sanchez-Silva, L. (2018). Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis. Energy Conversion and Management, 177, 416-427. doi: 10.1016/j.enconman.2018.09.088
- Silitonga, A. S., Atabani, A. E., Mahlia, T. M. I., Masjuki, H. H., Badruddin, I. A., & Mekhilef, S. (2011). A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews, 15(8), 3733-3756. doi: 10.1016/j.rser.2011.07.011
- Svishchev, D. A., Kozlov, A. N., Donskoy, I. G., & Ryzhkov, A. F. (2016). A semi-empirical approach to the thermodynamic analysis of downdraft gasification. Fuel, 168, 91-106. doi: 10.1016/j.fuel.2015.11.066
- Upadhyay, D. S., Sakhiya, A. K., Panchal, K., Patel, A. H., & Patel, R. N. (2019). Effect of equivalence ratio on the performance of the downdraft gasifier – An experimental and modelling approach. Energy, 168, 833-846. doi: 10.1016/j.energy.2018.11.133
- Wirawan, S. S. (2007). Electricity generation opportunities from palm oil mills in Indonesia. Presented at the 4th Biomass-Asia Workshop, Kuala Lumpur, Malaysia
- Yetkin, Y., Mansour, S., & Thomas, W. K. (2000). Mixing and compaction temperature for hot mixed asphalt concrete. Research Report Number 1250-5
- Żogała, A. (2014). Critical Analysis of Underground Coal Gasification Models. Part I: Equilibrium Models – Literary Studies. Journal of Sustainable Mining, 13(1), 22-28. doi: 10.7424/jsm140105
Last update: 2021-03-03 05:40:11
-
Gasification of refuse-derived fuel from municipal solid waste for energy production: a review
Environmental Chemistry Letters, 2021. doi: 10.1007/s10311-020-01177-5 -
Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence
Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 127 , 2020. doi: 10.1063/5.0030627 -
Investigation of Process Parameters Influence on Municipal Solid Waste Gasification with CO2 Capture via Process Simulation Approach
Fadilla Noor Rahma, Cholila Tamzysi, Arif Hidayat, Muflih Arisa Adnan. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.31982
Last update: 2021-03-03 05:40:13
-
Gasification of refuse-derived fuel from municipal solid waste for energy production: a review
Environmental Chemistry Letters, 2021. doi: 10.1007/s10311-020-01177-5 -
Numerical simulation for transverse migration of finite-size clean bubbles in homogeneous shear turbulence
Minh Quang Chau, Xuan Phuong Nguyen, Hung Chien Do, Thi Thai Le. PROCEEDINGS OF THE 2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE MANUFACTURING, MATERIALS AND TECHNOLOGIES, 127 , 2020. doi: 10.1063/5.0030627 -
Experimental Study on Impact of Thermal-Assisted Machining on SKD11 Steel Machinability
Hoang L.V.. International Journal on Advanced Science, Engineering and Information Technology, 10 (5), 2020. doi: 10.18517/ijaseit.10.5.13336 -
An experimental study on the performance characteristics of a diesel engine fueled with ulsd-biodiesel blends
Tran V.D.. International Journal of Renewable Energy Development, 10 (2), 2020. doi: 10.14710/ijred.2021.34022 -
Investigation of process parameters influence on municipal solid waste gasification with co
Rahma F.N.. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.319822 capture via process simulation approach -
A Numeral Simulation Determining Optimal Ignition Timing Advance of SI Engines Using 2.5-Dimethylfuran-Gasoline Blends
Chau M.Q.. International Journal on Advanced Science, Engineering and Information Technology, 10 (5), 2020. doi: 10.18517/ijaseit.10.5.13051

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.