skip to main content

A New Method of Bio-Catalytic Surface Modification for Microbial Desalination Cell

1Sekolah Tinggi Ilmu Kesehatan Bakti Tunas Husada Tasikmalaya, Indonesia

2Institut Européen des Membranes, Université de Montpellier, place E. Bataillon, 34293 Montpellier Cedex 5, France

3Institut Teknologi Bandung, Jalan Ganesha 10 Bandung, West of Java, Indonesia

Received: 15 Nov 2020; Revised: 25 Dec 2020; Accepted: 10 Jan 2021; Available online: 18 Jan 2021; Published: 1 May 2021.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
A microbial desalination cell (MDC) built on a modified surface has been studied for seawater desalination. The goal of this study is to provide and develop a seawater desalination system that does not require energy support by applying a modification of the anode as an electron acceptor. The different potential charges that occur between anode and cathode can serve as the driving force for electrodialysis of seawater, resulting in its desalination. Yeast has been applied as a biocatalyst and neutral red has been chosen as a redox mediator to facilitate the electron transport originating from the bioactivity of cells. Several types of surface modification have been conducted, i.e., biocatalyst-mediator immobilisation and electropolymerisation of neutral red at the anode surface. The optimisation of each device has been characterised by cyclic voltammetry and chronoamperometry. It has also been observed in a microbial fuel cell (MFC), prior to being functioned in the MDC. The concentrations of salt ion migration have been determined by ion exchange chromatography. This study found that the best configuration of a modified surface was obtained from carbon felt coated by polyneutral red film (CF/PNR); this generated the maximum value of all tested parameters: 42.2% of current efficiency; 27.11% of bio-devices efficiency; 92.5 mA m-2 of current density; and 61% of NaCl transport. Moreover, the modified surface could be a promising method for improving anode performance.
Fulltext View|Download
Keywords: Sea water desalination; Microbial desalination cell; Surface modification; Microbial fuel cell; Green analytical chemistry
Funding: National Research and Innovation, Ministry of Research and Technology Indonesia in term of Basic Research Grant

Article Metrics:

  1. Babanova S., Hubenova Y., and Mitov M. (2011). Influence of artificial mediators on yeast-based fuel cell performance. Journal of Bioscience and Bioengineering, 112, 379–387. DOI: 10.1016/j.jbiosc.2011.06.008
  2. Cardona C.A., and Sánchez O.J. (2007). Fuel ethanol production: process design trends and integration opportunities. Bioresource Technology, 98, 2415–2457. DOI: 10.1016/j.biortech.2007
  3. Cassidy M.B., Lee H., and Trevors J.T. (1996). Environmental applications of immobilized microbial cells: A review. Journal of Industrial Microbiology, 16, 79–101. DOI: 10.1007/BF01570068
  4. Champavert J., Mardiana U., and Innocent C. (2017). Bio-catalytic Devices for Energy Production. Current Organic Chemistry, 21, 1702-1712. DOI: 10.2174/1385272821666170427155324
  5. Chen C., and Gao Y. (2007). Electrosyntheses of poly(neutral red), a polyaniline derivative. Electrochimica Acta, 52, 3143–3148. DOI 10.1016/j.electacta.2006.09.056
  6. Chen S.M., and Lin K.C. (2001). The electrocatalytic properties of polymerized neutral red film modified electrodes. Journal of Electroanalytical Chemistry, 511,101–114. DOI: 10.1016/S0022-0728(01)00566-6
  7. Chen X., Xia X., Liang P., Cao X., Sun H., and Huang X. (2011). Stacked Microbial Desalination Cells to enhance water desalination efficiency. Environmental Science and Technology, 45, 2465–2470. DOI: 10.1021/es103406m
  8. Fane A.G., and Wang R. (2017). Bioinspired Membrane Engineering for Water Applications : Examples of enhanced membranes, mass transfer and biofilm control. Current Organic Chemistry, 21,1665-1670. DOI: 10.2174/1385272820666160608124841
  9. Forrestal C., Xu P., Jenkins P.E., and Ren Z. (2012). Microbial desalination cell with capacitive adsorption for ion migration control. Bioresource Technology, 120, 332–336. DOI: 10.1016/j.biortech.2012.06.044
  10. Ganguli R., and Dunn B. (2012). Electrically conductive, immobilized bioanodes for microbial fuel cells. Nanotechnology, 23, 1-7. DOI: 10.1088/0957-4484/23/29/294013
  11. Gonçalves R., Ghica M.E., and Brett C.M.A. (2011). Preparation and characterisation of poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxythiophene)/poly(neutral red) modified carbon film electrodes, and application as sensors for hydrogen peroxide. Electrochimica. Acta, 56, 3685–3692. DOI: 10.1016/j.electacta.2010.11.056
  12. Heidrich E.S., Curtis T.P., and Dolfing J. (2011). Determination of the internal chemical energy of wastewater. Environmental Science and Technology, 45, 827–832. DOI: 10.1021/es103058w
  13. Jacobson K.S., Drew D.M., and He Z. (2011). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 102, 376–380. DOI: 10.1016/j.biortech.2010.06.030
  14. Kalleary S., Abbas M.F., Ganesan A., Meenatchisundaram S., Srinivasan B., Packirisamy B.S.A., Kesavan K.R., and Muthusamy S. (2014). Biodegradation and bioelectricity generation by Microbial Desalination Cell. International Biodeterioration & Biodegradation, 92, 20–25. DOI: 10.1016/j.ibiod.2014.04.002
  15. Kim Y., and Logan B.E. (2011). Series assembly of Microbial Desalination Cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science and Technology, 45, 5840–5845. DOI: 10.1021/es200584q
  16. Kim Y., and Logan B.E. (2013). Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination, 308, 115–121. DOI: 10.1016/j.desal.2012.07.031
  17. Kokabian B., and Gude V.G. (2015). Sustainable photosynthetic biocathode in microbial desalination cells. Chemical Engineering Journal, 262, 958–65. DOI: 10.1016/j.cej.2014.10.048
  18. Luo H., Xu P., Jenkins P.E., and Ren Z. (2012). Ionic composition and transport mechanisms in microbial desalination cells.Journal of Membane Science, 409-10, 16–23. DOI: 10.1016/j.memsci.2012.02.059
  19. Mardiana U., Innocent C., Cretin M., Buchari B., Setiyanto H., Nurpalah R., Kusmiati M. (2019). Applicability of Alginate Film Entrapped Yeast for Microbial Fuel Cell. Russian Journal of Electrochemistry, 55, 78–87. DOI: 10.1134/S1023193519010075
  20. Mardiana U., Innocent C., Jarrar H., Cretin M., Buchari B., Gandasasmita S. (2015). Electropolymerized neutral red as redox mediator for yeast fuel cell. International Journal of Electrochemical Science, 10, 8886-8898
  21. Maritz J., Krieg H.M., Yeates C.A., Botes A.L., and Breytenbach J.C. (2003). Calcium alginate entrapment of the yeast Rhodosporidium toruloides for the kinetic resolution of 1 , 2-epoxyoctane. Biotechnology Letter, 20,1775–1781. DOI: 10.1023/a:1026044113856
  22. Meena K., and Raja T.K. (2006). Immobilization of Saccharomyces cerevisiae cells by gel entrapment using various metal alginates.World Journal of Microbiology and Biotechnology,22, 651–653. DOI: 10.1007/s11274-005-9085-1
  23. Mehanna M., Saito T., Yan J., Hicjner M., Cao X., Huang X. and Logan B.E. (2010). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy and Environmental Science, 3, 1114-1120. DOI: 10.1039/c002307h
  24. Meng F., Jiang J., Zhao Q., Wang K., Zhang G., Fan Q., Wei L., Ding J., Zheng Z. (2014). Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel. Bioresource Technology, 157, 120–126. DOI: 10.1016/j.biortech.2014.01.056
  25. Mulyono T., Misto, Busroni, Siswanto. (2020). Bioelectricity Generation from Single-Chamber Microbial Fuel Cells with Various Local Soil Media and Green Bean Sprouts as Nutrient. International journal of Renewable Energy Development, 9(3), 423-429. DOI: 10.14710/ijred.2020.30145
  26. Pauliukaite R., and Brett C.M.A. (2008). Poly(neutral red): electrosynthesis, characterization, and application as a redox mediator. Electroanalysis, 20,1275–85. DOI: 10.1002/elan.200804217
  27. Qu Y., Feng Y., Wang X., Liu J., Lv J., He W., and Logan B.E. (2012). Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology, 106, 89–94. DOI: 10.1016/j.biortech.2011.11.045
  28. Saeed H.M., Husseini G.A., Yousef S., Saif J. (2015). Microbial desalination cell technology: A review and a case study. Desalination, 359, 1–13. DOI: 10.1016/j.desal.2014.12.024
  29. Sayed E.T., Tsujiguchi T., and Nakagawa N. (2012). Catalytic activity of baker’s yeast in a mediatorless microbial fuel cell. Bioelectrochemistry, 86, 97–101. DOI: 10.1016/j.bioelechem.2012.02.001
  30. Taher H., Al-Zuhair S., Al-Marzouqi A.H., Haik Y., and Farid M.M. (2011). A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Research, 2011, 1-25. DOI: 10.4061/2011/468292
  31. Walker A.L., and Walker C.W. (2006). Biological fuel cell and an application as a reserve power source. Journal of Power Sources, 160, 123-129. DOI: 10.1016/j.jpowsour.2006.01.077
  32. Wen Q., Zhang H., Chen Z., Li Y., Nan J., Feng Y. (2012). Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresource Technology, 125, 108-113. DOI: 10.1016/j.biortech.2012.08.140
  33. Werner C.M., Logan B.E., Saikaly P.E., and Amy G.L. (2013). Wastewater treatment, energy recovery and desalination using a forward osmosis membrane in an air-cathode microbial osmotic fuel cell. Journal of Membane Science, 428, 116–122. DOI: 10.1016/j.memsci.2012.10.031
  34. Yang C., Yi J., Tang X., Zhou G., and Zeng Y.(2006). Studies on the spectroscopic properties of poly(neutral red) synthesized by electropolymerization. Reactive and Functional Polymer, 66, 1336–1341. DOI: 10.1016/j.reactfunctpolym.2006.03.015
  35. Yong Y.C., Liao Z.H., Sun Y.Z., Zheng T., Jiang R.R., and Song H. (2013). Enhancement of coulombic efficiency and salt tolerance in microbial fuel cells by graphite/alginate granules immobilization of Shewanella oneidensis MR-1. Process Biochemistry, 48, 1947–1951. DOI: 10.1016/j.procbio.2013.09.008
  36. Zhang H., Wen Q., An Z., Chen Z., and Nan J. (2016). Analysis of long-term performance and microbial community structure in bio-cathode microbial desalination cells. Environmental Science and Pollutan Research, 23, 5931–5940. DOI: 10.1016/j.biortech.2012.01.137

Last update:

  1. Estado del arte. Métodos de desalinización de agua

    Henry Salinas-Freire , Osney Pérez-Ones , Susana Rodríguez-Muñoz . Revista Ingeniería UC, 28 (2), 2021. doi: 10.54139/revinguc.v28i2.21
  2. Enhancing electrokinetics and desalination efficiency through catalysts and electrode modifications in microbial desalination cells

    Srishti Mishra, Anil Dhanda, Brajesh K. Dubey, Makarand M. Ghangrekar. Journal of Environmental Management, 366 , 2024. doi: 10.1016/j.jenvman.2024.121719

Last update: 2024-11-21 12:16:18

No citation recorded.