skip to main content

Energy Use of Mediterranean Forest Biomass in Sustainable Public Heating Systems and its Effects on Climate Change – Case of Study

1Government of the Province of Valencia, Service of environment, Water and Waste Department, Avda. Peset Aleixandre 63, 46009 Valencia, Spain

2Department of Hydraulics and Environment, Investigation on Science and Forest Technology Group, Polytechnic University of Valencia, Paraninfo nº 1, 46730 Grao Gandía, Spain

Received: 8 Nov 2020; Revised: 10 Dec 2020; Accepted: 15 Dec 2020; Available online: 20 Dec 2020; Published: 1 May 2021.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The municipality of Serra, Valencia, located in the Spanish Mediterranean east coast, covers an area of 5,730 hectares, with 95% of this territory lying within the Sierra Calderona Natural Park and 85% being forest. The main axis of the municipality’s economy has been the construction, reducing the primary sector, resulting in uncontrolled growth of forest and deterioration of the landscape. All this has raised forest fire risk to dangerous levels threatening the natural heritage of Serra and the future of the Serra Calderona Natural Park. The study shows how an adequate model of forest biomass management, through energetic use in sustainable public heating systems, can have positive direct effects in the fight against climate change, considering both economics aspects and environmental effects, and its capacity to contribute to the socioeconomic development of agro forestry regions, fixing its habitants and offering a rural development based on the rational use of their natural resources
Fulltext View|Download
Keywords: biomass; renewable energy; forest management; public buildings; sustainable heating systems

Article Metrics:

  1. Agencia EFE. (2012). España cifra en 90 millones las pérdidas en Cortes de Pallás y Andilla. Levante emv 16-07-2012; https://www.levante-emv.com/comunitat-valenciana/2012/07/16/espana-cifra-90-millones-perdidas-12968097.html
  2. Carrillo-Parra, A., Contreras-Trejo, J.C., Pompa-García, M., Pulgarín-Gámiz, M.Á., Rutiaga-Quiñones, J.G., Pámanes-Carrasco, G., Ngangyo-Heya, M. (2020). Agro-Pellets from Oil Palm Residues/Pine Sawdust Mixtures: Relationships of Their Physical, Mechanical and Energetic Properties, with the Raw Material Chemical Structure. Appl. Sci, 10, 6383; https://doi.org/10.3390/app10186383
  3. Deb U., Bhuyan N., Bhattacharya S., and Kataki R. (2019). Agro-residues and weed biomass as a source bioenergy: Implications for sustainable management and valorization of low-value biowastes, International Journal of Renewable Energy Development, 8(3), 243-251; https://doi.org/10.14710/ijred.8.3.243-251
  4. Generalitat Valenciana. (2001) Decreto 77/2001, de 2 de abril, del Consell, por el que se aprueba el Plan de Ordenación de los Recursos Naturales de la Sierra Calderona. Texto íntegro. Vol. I. Introduction, 14
  5. Generalitat Valenciana. (2001). Decreto 77/2001, de 2 de abril, del Consell, por el que se aprueba el Plan de Ordenación de los Recursos Naturales de la Sierra Calderona. Texto íntegro. Vol. III Diagnostic, S1. 1-2
  6. Giménez, I. Asociación Española de Valorización Energética de la Biomasa, AVEBIOM. (2018). Astillas "kilómetro cero" en el vallès occidental. Bioenergy International, nº 41, 22-24
  7. Giorio Ch., Pizzini S., Marchiori E., Piazza R., Grigolato S., Zanetti m., Cavalli R., Simoncin M., Soldà L., Badocco D., Tapparo A. (2019). Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact, Fuel, 243, 371-380; https://doi.org/10.1016/j.fuel.2019.01.128
  8. Giurea, R., Precazzini, I., Ragazzi, M., Achim, M.I., Cioca, L.-I., Conti, F., Torretta, V., Rada, E.C. (2018). Good Practices and Actions for Sustainable Municipal Solid Waste Management in the Tourist Sector. Resources, 7, 51. https://doi.org/10.3390/resources7030051
  9. IDAE Instituto para la Diversificación y Ahorro de la Energía. Ministerio de Industria, Turismo y Comercio. (2007). Energía de la biomasa. chap. 2, 19-31;
  10. Jekayinfa, S.O., Orisaleye, J.I., Pecenka, R. (2020). An Assessment of Potential Resources for Biomass Energy in Nigeria. Resources, 9, 92; https://doi.org/10.3390/resources9080092
  11. Kolovos K., Kyriakopoulos G., M. S. Chalikias M. (2011). Co-evaluation of basic wood fuel types used as alternative heating sources to existing energy network. Journal of Environmental Protection and Ecology, 12 (2), 733-742
  12. Kyriakopoulos G, Chalikias M. (2013). The Investigation of Woodfuels' Involvement in Green Energy Supply Schemes at Northern Greece: The Model Case of the Thrace Prefecture. Procedia Technology, 8, 445-452; https://doi.org/10.1016/j.protcy.2013.11.057
  13. Kyriakopoulos G. (2010). European and international policy interventions of implementing the use of wood fuels in bioenergy sector: a trend analysis and a specific wood fuels' energy application. International Journal of Knowledge and Learning, 6(1), 43-54. https://doi.org/10.1504/IJKL.2010.034482
  14. Kyriakopoulos G., Arabatzis G., Tsialis P., Ioannou K. (2018). Electricity consumption and RES plants in Greece: Typologies of regional units. Renewable Energy, 127, 134-144; https://doi.org/10.1016/j.renene.2018.04.062
  15. Martín-Gamboa, M., Dias, L.C., Quinteiro, P., Freire, F., Arroja, L., Dias, A.C. (2019). Multi-Criteria and Life Cycle Assessment of Wood-Based Bioenergy Alternatives for Residential Heating: A Sustainability Analysis. Energies, 12, 4391. https://doi.org/10.3390/en12224391
  16. Martinho, V.J.P.D. (2019) Socioeconomic Impacts of Forest Fires upon Portugal: An Analysis for the Agricultural and Forestry Sectors. Sustainability, 11, 374; https://doi.org/10.3390/su11020374
  17. MAPAMA Ministerio de Agricultura, Pesca y Alimentación. Dirección General de Desarrollo Rural, Innovación y Política Forestal. (2019). Los Incendios forestales en España Decenio 2006-2015, 18; https://www.mapa.gob.es/es/desarrollo-rural/estadisticas/incendios-decenio-2006-2015_tcm30-511095.pd
  18. Miranda, T., Montero, I., Sepúlveda, F.J., Arranz, J.I., Rojas, C.V., Nogales, S. (2015). A Review of Pellets from Different Sources. Materials, 8, 1413-1427. https://doi.org/10.3390/ma8041413
  19. Morresi, D., Vitali, A., Urbinati, C., Garbarino, M. (2019). Forest Spectral Recovery and Regeneration Dynamics in Stand-Replacing Wildfires of Central Apennines Derived from Landsat Time Series. Remote Sens, 11, 308; https://doi.org/10.3390/rs11030308
  20. National Institute of Statistics of Spain. (2020). Official population figures at first of January 2020, Municipal Detail. https://www.ine.es/jaxiT3/Datos.htm?t=2903#!tabs-tabla
  21. Nunes, L.J.R., Matias, J.C.O. (2020). Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production. Sustainability, 12; 922. https://doi.org/10.3390/su12030922
  22. OCCC Oficina Catalana del Canvi Climàtic. (2018) Guia pràctica per al càlcul d'emissions de gasos amb efecte d'hivernacle (GEH), 13-28; https://canviclimatic.gencat.cat/web/.content/04_ACTUA/Com_calcular_emissions_GEH/guia_de_calcul_demissions_de_co2/190301_Guia-practica-calcul-emissions_CA.pdf
  23. Pausas J. G., Llovet J., Rodrigo A., Vallejo R. (2008) Are wildfires a disaster in the Mediterranean basin? - A review. International Journal of Wildland Fire 17, 713-723; https://doi.org/10.1071/WF07151
  24. Pawłat-Zawrzykraj, A., Podawca, K. (2020). Diversification of Municipalities Located in the Impact Area of National Parks in Terms of Environmental Requirements of Sustainable Tourism. Sustainability, 12, 4896. https://doi.org/10.3390/su12124896
  25. Picchio, R., Latterini, F., Venanzi, R., Stefanoni, W., Suardi, A.; Tocci, D., Pari, L. (2020). Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation. Energies, 13, 2937. https://doi.org/10.3390/en13112937
  26. Preiss, E., Martin, J., Debussche, M. (1997). Rural depopulation and recent landscape changes in a Mediterranean region: Consequences to the breeding avifauna. Landscape Ecol 12, 51-61; https://doi.org/10.1007/BF02698207
  27. Regos, A., Aquilué, N., López, I. et al. (2016). Synergies Between Forest Biomass Extraction for Bioenergy and Fire Suppression in Mediterranean Ecosystems: Insights from a Storyline-and-Simulation Approach. Ecosystems 19, 786-802; https://doi.org/10.1007/s10021-016-9968-z
  28. Ronzon, T., Piotrowski, S., Tamosiunas, S., Dammer, L., Carus, M., M'barek, R. (2020). Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU. Sustainability, 12, 4507. https://doi.org/10.3390/su12114507
  29. Streimikiene, D., Lekavičius, V., Baležentis, T., Kyriakopoulos, G.L., Abrhám, J.(2020). Climate Change Mitigation Policies Targeting Households and Addressing Energy Poverty in European Union. Energies, 13, 3389; https://doi.org/10.3390/en13133389
  30. Thek G., Obernberger I., (2004). Wood pellet production costs under Austrian and in comparison to Swedish framework conditions, Biomass and Bioenergy, 27(6), 671-693; https://doi.org/10.1016/j.biombioe.2003.07.007
  31. Vanneste J., Van Gerven T., Vander Putten E., Van der Bruggen B., Helsen L., (2011). Energetic valorisation of wood waste: Estimation of the reduction in CO2 emissions, Science of The Total Environment, 409(19), 3595-3602; https://doi.org/10.1016/j.scitotenv.2011.04.059
  32. Varga, D. (2020). Are Agrarian Areas in Mediterranean Mountain Regions Becoming Extinct? A Methodological Approach to Their Conservation. Forests, 11, 1116; https://doi.org/10.3390/f11101116
  33. Visser, L.; Hoefnagels, R.; Junginger, M. (2020). The Potential Contribution of Imported Biomass to Renewable Energy Targets in the EU-the Trade-off between Ambitious Greenhouse Gas Emission Reduction Targets and Cost Thresholds. Energies, 13, 1761. https://doi.org/10.3390/en13071761
  34. Bujdosó Z., Patkós C., Kovács T., Radics Z., and Baros Z. (2012). The Social Aspects and Public Acceptance of Biomass Giving the Example of a Hungarian Region, International Journal of Renewable Energy Development, 1(2), 39-43; https://doi.org/10.14710/ijred.1.2.39-43
  35. Zanchi, G., Pena, N. and Bird, N. (2011), Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Glob. Change Biol. Bioenergy, 4, 761-772; https://doi.org/10.1111/j.1757-1707.2011.01149.x
  36. Zvingilaite E, Balyk O. (2014) Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating, Energy and Buildings, 82, 173-186,; https://doi.org/10.1016/j.enbuild.2014.06.046

Last update:

  1. Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches

    Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran. International Journal of Green Energy, 2024. doi: 10.1080/15435075.2024.2326076
  2. Experimental analysis of performance and emission of a turbocharged diesel engine operated in dual-fuel mode fueled with bamboo leaf-generated gaseous and waste palm oil biodiesel/diesel fuel blends

    Biswajeet Nayak, Thingujam Jackson Singh, Anh Tuan Hoang. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021. doi: 10.1080/15567036.2021.2009595

Last update: 2024-04-25 07:45:33

No citation recorded.