skip to main content

A Visual Support of Standard Procedures for Solar Radiation Quality Control

1Laboratory of Signals, Systems and Components, Sidi Mohamed Ben Abdellah University: Faculty of Science and Technology of Fez, Route d’Immouzer, B.P. 2202, Fez, Morocco

2Green Energy Park (IRESEN, UM6P), Km 2 Route Régionale R206, Benguerir, Morocco

3O.I.E. Centre Observation, Impacts, Energy, MINES ParisTech, PSL – Research University, Rue Claude Daunesse, CS 10207, 06904 Sophia Antipolis CEDEX, France

4 German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería, 73, 2,04001 Almeria, Spain

5 Mohammed V University of Rabat École Normale Supérieure de Rabat, Rabat, Morocco

View all affiliations
Received: 7 Dec 2020; Revised: 18 Jan 2021; Accepted: 5 Feb 2021; Available online: 17 Feb 2021; Published: 1 Aug 2021.
Editor(s): Siamak Hoseinzadeh
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Solar irradiance data from high-quality ground-based measurements are primordial for different solar energy applications. In order to achieve the required accuracy, quality control procedures are of great benefit. A variety of approaches   have been proposed. In this sense, some approaches propose a visual representation of the routine, while others only provide a time series of binary flag values, and do not propose any specific visualization of the flagged data as opposed to non-flagged ones. In this regard, the present paper puts forward a complete routine including several quality control procedures for solar irradiance measurements by providing visual support for these different approaches. The visual tool in question was validated using five years research data with 10 minutes resolution of the global, diffuse and direct components of solar irradiation collected from three ground-based weather stations in Morocco. This visual tool puts forth a more precise idea of the measurement quality by detecting various errors, such as time shifts, outliers identification; either with one or two components, or consistency tests between the three components of solar radiation when available. The proposed tool can be regarded as a means of improving the detection rate of abnormal data as a first step in diagnosing the prominent causes of error.

Fulltext View|Download
Keywords: Solar irradiance; solar energy; quality check; ground measurements
Funding: Centre National pour la Recherche Scientifique et Technique

Article Metrics:

  1. Ameen, B., Balzter, H., Jarvis, C., 2018. Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures. Climate 6, 69.
  2. Antonanzas-Torres, F., Cañizares, F., Perpiñán, O., 2013. Comparative assessment of global irradiation from a satellite estimate model (CM SAF) and on-ground measurements (SIAR): A Spanish case study. Renewable and Sustainable Energy Reviews 21, 248–261.
  3. Antonanzas-Torres, F., Urraca, R., Polo, J., Perpiñán-Lamigueiro, O., Escobar, R., 2019. Clear sky solar irradiance models: A review of seventy models. Renewable and Sustainable Energy Reviews 107, 374–387.
  4. Ascencio-Vásquez, J., Brecl, K., Topič, M., 2019. Methodology of Köppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance. Solar Energy 191, 672–685
  5. Blanc, Ph., Wald, L., 2012. The SG2 algorithm for a fast and accurate computation of the position of the Sun for multi-decadal time period. Solar Energy 86, 3072–3083.
  6. CMP21- Kipp & Zonen, n.d. CMP21 spectrally flat Class A pyranometer - Kipp & Zonen [WWW Document]. URL (accessed 9.7.20)
  7. Eissa, Y., Korany, M., Aoun, Y., Boraiy, M., Abdel Wahab, M.M., Alfaro, S.C., Blanc, P., El-Metwally, M., Ghedira, H., Hungershoefer, K., Wald, L., 2015. Validation of the Surface Downwelling Solar Irradiance Estimates of the HelioClim-3 Database in Egypt. Remote Sensing 7, 9269–9291.
  8. Espinar, B., Blanc, P., Wald, L., Gschwind, B., Ménard, L., Wey, E., Thomas, C., Saboret, L., 2012. HelioClim-3: a near-real time and long-term surface solar irradiance database
  9. García, R.D., Cuevas, E., Ramos, R., Cachorro, V.E., Redondas, A., Moreno-Ruiz, J.A., 2019. Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures. Geosci. Instrum. Method. Data Syst. 8, 77–96.
  10. Geiger, M., Diabaté, L., Ménard, L., Wald, L., 2002. A Web service for controlling the quality of measurements of global solar irradiation. Solar Energy 73, 475–480
  11. Geuder, N., Wolfertstetter, F., Wilbert, S., Schüler, D., Affolter, R., Kraas, B., Lüpfert, E., Espinar, B., 2015. Screening and flagging of solar irradiation and ancillary meteorological data. Energy Procedia 69, 1989–1998
  12. Habte, A.M., Sengupta, M., 2019. Data Quality Assessment Using SERI-QC. National Renewable Energy Lab.(NREL), Golden, CO (United States)
  13. Ineichen, P., 2013. Solar radiation resource in Geneva: measurements, modeling, data quality control, format and accessibility
  14. Ineichen, P., 2006. Comparison of eight clear sky broadband models against 16 independent data banks. Solar Energy 80, 468–478.
  15. Journée, M., Bertrand, C., 2011. Quality control of solar radiation data within the RMIB solar measurements network. Solar Energy 85, 72–86.
  16. Kalogirou, S.A., 2001. Artificial neural networks in renewable energy systems applications: a review. Renewable and Sustainable Energy Reviews 5, 373–401.
  17. Kasten, F., 1980. A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor
  18. Long, C., Shi, Y., 2008. An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements. The Open Atmospheric Science Journal 2, 23–37.
  19. Long, C., Shi, Y., 2006. The QCRad value added product: Surface radiation measurement quality control testing, including climatology configurable limits. Atmospheric Radiation Measurement Program Technical Report
  20. Long, C.N., Dutton, E.G., 2010. BSRN Global Network recommended QC tests, V2.x [WWW Document]. EPIC3Bremerhaven, PANGAEA. URL (accessed 12.5.19)
  21. Maxwell, E., Wilcox, S., Rymes, M., 1993. Users manual for seri qc software, assessing the quality of solar radiation data. Solar Energy Research Institute, Golden, CO
  22. Moradi, I., 2009. Quality control of global solar radiation using sunshine duration hours. Energy 34, 1–6.
  23. Moreno, S., Silva, M., Santigosa, L., 2015. A proposed methodology for quick assessment of timestamp and quality control results of solar radiation data. Renewable Energy Volume 78, Pages 531–537.
  24. Muneer, T., Fairooz, F., 2002. Quality control of solar radiation and sunshine measurements – lessons learnt from processing worldwide databases. Building Services Engineering Research and Technology 23, 151–166.
  25. Ntsangwane, L., Sivakumar, V., Mabasa, B., Zwane, N., Ncongwane, K., Botai, J., 2018. Quality Control of Solar Radiation Data within the South African Weather Service Solar Radiometric Network.
  26. Ohmura, A., Dutton, E.G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H., Heimo, A., König-Langlo, G., McArthur, B., Müller, G., 1998. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bulletin of the American Meteorological Society 79, 2115–2136
  27. Page, J.K., 1997. Proposed quality control procedures for the meteorological office data tapes relating to global solar radiation, diffuse solar radiation, sunshine and cloud in the UK. Report FCIBSE
  28. Palmer, D., Koubli, E., Cole, I., Betts, T., Gottschalg, R., 2018. Satellite or ground-based measurements for production of site specific hourly irradiance data: Which is most accurate and where? Solar Energy 165, 240–255.
  29. Pashiardis, S., Kalogirou, S.A., 2016. Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus. Renewable Energy 96, 1015–1033.
  30. Perez, R., Ineichen, P., Seals, R., Zelenka, A., 1990. Making full use of the clearness index for parameterizing hourly insolation conditions. Solar Energy 45, 111–114
  31. Polo, J., Fernández-Peruchena, C., Salamalikis, V., Mazorra-Aguiar, L., Turpin, M., Martín-Pomares, L., Kazantzidis, A., Blanc, P., Remund, J., 2020. Benchmarking on improvement and site-adaptation techniques for modeled solar radiation datasets. Solar Energy 201, 469–479
  32. Polo, J., Wilbert, S., Ruiz-Arias, J.A., Meyer, R., Gueymard, C., Suri, M., Martin, L., Mieslinger, T., Blanc, P., Grant, I., 2016. Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy 132, 25–37
  33. Qu, Z., Gschwind, B., Lefèvre, M., Wald, L., 2014. Improving HelioClim-3 estimates of surface solar irradiance using the McClear clear-sky model and recent advances in atmosphere composition
  34. Reviewed, P., Merced, M.E., 2012. University of California Solar Irradiance Forecasting at Multiple Time Horizons and Novel Methods To Evaluate Uncertainty A dissertation submitted in partial satisfaction 6
  35. Roesch, A., Wild, M., Ohmura, A., Dutton, E.G., Long, C.N., Zhang, T., 2011. Assessment of BSRN radiation records for the computation of monthly means. Atmospheric Measurement Techniques 4, 339–354.
  36. Ruiz-Arias, J.A., Gueymard, C.A., 2018. Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface. Solar Energy, Advances in Solar Resource Assessment and Forecasting 168, 10–29.
  37. Scharmer, K., Page, J., Wald, L., Albuisson, M., Czeplak, G., Bourges, B., Aguiar, R., Lund, H., Joukoff, A., Terzenbach, U., Beyer, H.G., Borisenkov, E.P., 2000. The European Solar Radiation Atlas Vol.1: Fundamentals and maps
  38. Schüler, D., Wilbert, S., Geuder, N., Affolter, R., Wolfertstetter, F., Prahl, C., Röger, M., Schroedter-Homscheidt, M., Abdellatif, G., Guizani, A.A., Balghouthi, M., Khalil, A., Mezrhab, A., Al-Salaymeh, A., Yassaa, N., Chellali, F., Draou, D., Blanc, P., Dubranna, J., Sabry, O.M.K., 2016. The enerMENA meteorological network – Solar radiation measurements in the MENA region. AIP Conference Proceedings 1734, 150008.
  39. Tregenza, P., Perez, R., Michalsky, J., Seals, R., Molineaux, B., Ineichen, P., 1994. Guide to recommended practice of daylight measurement
  40. Urraca, R., Gracia-Amillo, A.M., Huld, T., Martinez-de-Pison, F.J., Trentmann, J., Lindfors, A.V., Riihelä, A., Sanz-Garcia, A., 2017. Quality control of global solar radiation data with satellite-based products. Solar Energy 158, 49–62
  41. WMO, 1987. WCDP, 03. Guidelines on the quality control of data from the world radiometric network, WMO/TD. WMO, Geneva
  42. Younes, S., Claywell, R., Muneer, T., 2005. Quality control of solar radiation data: Present status and proposed new approaches. Energy, Measurement and Modelling of Solar Radiation and Daylight- Challenges for the 21st Century 30, 1533–1549.
  43. Zo, I.-S., Jee, J.-B., Kim, B.-Y., Lee, K.-T., 2017. Baseline Surface Radiation Network (BSRN) quality control of solar radiation data on the Gangneung-Wonju National University radiation station. Asia-Pacific J Atmos Sci 53, 11–19.

Last update:

No citation recorded.

Last update:

No citation recorded.