Improvement Approach for Matching PV-array and Inverter of Grid Connected PV Systems Verified by a Case Study

*Moien A. Omar orcid scopus  -  Electrical Engineering Department, An-Najah National University, Nablus, West Bank, Palestinian Territory, Occupied
Marwan M. Mahmoud orcid scopus  -  Electrical Engineering Department, An-Najah National University, Nablus, West Bank, Palestinian Territory, Occupied
Received: 25 Jan 2021; Revised: 25 Mar 2021; Accepted: 8 Apr 2021; Published: 1 Nov 2021; Available online: 20 Apr 2021.
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Correct matching between PV array and inverter improves the inverter efficiency, increases the annual produced energy, decreases the clipping losses of the inverter, and prevent to a large extent the inverter frequent shut downs during clear sunny days of high solar radiation and low ambient temperature. Therefore, this paper presents a new methodology for selecting the appropriate peak power of the PV array with respect to the inverter output AC rated power taking into account the local daily distribution of solar radiation and ambient temperature. In addition, the proposed methodology specifies the appropriate number of PV modules in each string and the number of parallel strings connected to the input of the inverteraccording to its specifications and to PV cell temperature. Mathematically modeling of system parameters and components are presented and used in the simulation to investigate the different scenarios. The paper presents also a case study using simulation to find the optimal matching parameters of a PV array connected to an inverter with the specifications: 6 kW rated output power, an input mpp voltage range of 333-500 V, 6.2 kW maximum input DC power, and an output AC voltage of 230 Vrms. Considering the local climate conditions in West Bank, the simulation resulted a peak power of 7 kW for the PV array, which is greater than the inverter output power by the factor 1.16. In addition, the obtained PV array consists of two parallel strings each includes 12 PV modules  connected in series  while each PV module is rated at 290 W. The output voltage of the PV arrayvaries between 359 V to 564 Vat minimum and maximum temperature of 10 ˚C to 70 ˚C respectively. This PV array-inverter combination resulted by simulation an annual yield of 1600 kWh/kWp and an energy of 11197 kWh which corresponds to an energy gain of 1591 kWh/year more than using a PV array with a peak power of 6 kW as the inverter rated power.
Keywords: PV grid connected systems; PV inverters; PV array inverter sizing ratio; maximum power point; PV array configuration.

Article Metrics:

  1. Blaabjerg, F. (Ed.). (2018). Control of Power Electronic Converters and System, (2). Academic Press. doi: 10.1016/c2015-0-02427
  2. Boyson, W. E., Galbraith, G. M., King, D. L., & Gonzalez, S. (2007). Performance model for grid-connected photovoltaic inverters. (No. SAND2007-5036). Sandia National Laboratories. doi: 10.2172/920449
  3. Brunisholz, G. (2015)."Snapshot of Global Photovoltaic Markets; Report IEA PVPS T1-29: 2016." International Energy Agency (IEA): Paris, France
  4. Burger, B., & Rüther, R. (2006). Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature. Solar Energy, 80(1), 32–45. doi: 10.1016/j.solener.2005.08.012
  5. Camps, X. et al., 2015. Contribution to the PV-to-inverter sizing ratio determination using a custom flexible experimental setup. Applied Energy, 149, pp.35–45. Available at: http://dx.doi.org/10.1016/j.apenergy.2015.03.050
  6. Chen, S., Li, P., Brady, D., & Lehman, B. (2013). Determining the optimum grid-connected photovoltaic inverter size. Solar Energy, 87, 96–116. doi: 10.1016/j.solener.2012.09.012
  7. EPIA European Photovoltaic Industry Association. (2014). "Global market outlook for photovoltaics 2014-2018." Brussels, Belgium
  8. Faranda, R., Hafezi, H., Leva, S., Mussetta, M., & Ogliari, E. (2015). The Optimum PV Plant for a Given Solar DC/AC Converter. Energies, 8(6), 4853–4870. doi: 10.3390/en8064853
  9. Good, J., & Johnson, J. X. (2016). Impact of inverter loading ratio on solar photovoltaic system performance. Applied Energy, 177, 475–486. doi: 10.1016/j.apenergy.2016.05.134
  10. Holmes, D. Grahame, and Thomas A. Lipo. (2003). Pulse width modulation for power converters: principles and practice. John Wiley & Sons,
  11. Honrubia-Escribano, A., Ramirez, F. J., Gómez-Lázaro, E., Garcia-Villaverde, P. M., Ruiz-Ortega, M. J., & Parra-Requena, G. (2018). Influence of solar technology in the economic performance of PV power plants in Europe. A comprehensive analysis. Renewable and Sustainable Energy Reviews, 82, 488–501. doi: 10.1016/j.rser.2017.09.061
  12. Masters, G. M. (2013). Renewable and efficient electric power systems. John Wiley & Sons
  13. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2018). Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies. International Journal of Renewable Energy Development, 7(2), 85–91. doi: 10.14710/ijred.7.2.85-91
  14. Mohan, N., & Undeland, T. M. (2007). Power electronics: converters, applications, and design. John Wiley & Sons
  15. Notton, G., Lazarov, V., & Stoyanov, L. (2010). Optimal sizing of a grid-connected PV system for various PV module technologies and inclinations, inverter efficiency characteristics and locations. Renewable Energy, 35(2), 541–554. doi: 10.1016/j.renene.2009.07.013
  16. Omar, M. A., & Mahmoud, M. M. (2018). Economic evaluation of residential grid connected PV systems based on Net-Metering and Feed-in-Tariff schemes in Palestine. International Journal of Renewable Energy Research (IJRER), 8(4), 2106-2115
  17. Omar, M. A., & Mahmoud, M. M. (2018). Grid connected PV- home systems in Palestine: A review on technical performance, effects and economic feasibility. Renewable and Sustainable Energy Reviews, 82, 2490–2497. doi: 10.1016/j.rser.2017.09.008
  18. Omar, M. A., & Mahmoud, M. M. (2019). Design and Simulation of a PV System Operating in Grid-Connected and Stand-Alone Modes for Areas of Daily Grid Blackouts. International Journal of Photoenergy, 2019, 1–9. doi: 10.1155/2019/5216583
  19. Omar, M. A., & Mahmoud, M. M. (2019). Temperature impacts on the performance parameters of grid‐connected PV systems based on field measurements in Palestine. IET Renewable Power Generation, 13(14), 2541–2548. doi: 10.1049/iet-rpg.2018.6281
  20. Peippo, K., & Lund, P. D. (1994). Optimal sizing of grid-connected PV-systems for different climates and array orientations: a simulation study. Solar Energy Materials and Solar Cells, 35, 445–451. doi: 10.1016/0927-0248(94)90172-4
  21. Peippo, K., & Lund, P. D. (1994). Optimal sizing of solar array and inverter in grid-connected photovoltaic systems. Solar Energy Materials and Solar Cells, 32(1), 95–114. doi: 10.1016/0927-0248(94)90259-3
  22. Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650–665. doi: 10.1016/j.solener.2016.10.042
  23. Sánchez-Carbajal, S., & Rodrigo, P. M. (2019). Optimum Array Spacing in Grid-Connected Photovoltaic Systems considering Technical and Economic Factors. International Journal of Photoenergy, 2019, 1–14. doi: 10.1155/2019/1486749
  24. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2020). Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan. International Journal of Renewable Energy Development, 10 (1), 97–103, doi: 10.14710/ijred.2021.32352
  25. Santiago, I., Trillo-Montero, D., Moreno-Garcia, I. M., Pallarés-López, V., & Luna-Rodríguez, J. J. (2018). Modeling of photovoltaic cell temperature losses: A review and a practice case in South Spain. Renewable and Sustainable Energy Reviews, 90, 70–89. doi: 10.1016/j.rser.2018.03.054
  26. Premkumar, M., Kumar, C., & Sowmya, R. (2020). Mathematical Modelling of Solar Photovoltaic Cell/Panel/Array based on the Physical Parameters from the Manufacturer’s Datasheet. International Journal of Renewable Energy Development, 9(1), 7–22. doi: 10.14710/ijred.9.1.7-22
  27. Wang, H. X., Muñoz-García, M. A., Moreda, G. P., & Alonso-García, M. C. (2018). Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations. Renewable Energy, 118, 709–717. doi: 10.1016/j.renene.2017.11.063

Last update: 2021-05-14 23:13:30

No citation recorded.

Last update: 2021-05-14 23:13:30

No citation recorded.