skip to main content

Effect of Organic Waste Addition into Animal Manure on Biogas Production Using Anaerobic Digestion Method

1Chemical Industrial Engineering Technology, Vocational School, Diponegoro University, Semarang 50239, Indonesia

2Department of Chemical Engineering, Diponegoro University, Semarang 50239, Indonesia

Received: 5 Jan 2021; Revised: 10 Mar 2021; Accepted: 15 Mar 2021; Available online: 2 Apr 2021; Published: 1 Aug 2021.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
One biomass form with a high potential to replace fossil fuels is biogas. Biogas yield production depends on the raw material or substrate used. This research was aimed to investigate a biogas production technique using an anaerobic digestion process based on a substrate mixture of a starter, cow dung, chicken manure, tofu liquid waste, and cabbage waste. The anaerobic digestion is a promised process to reduce waste while it is also producing renewable energy. Moreover, the process can digest high nutrients in the waste. The anaerobic digestion results showed that the combination producing the highest biogas amount was 200 mg starter mixed with a ratio of 70% cow dung, 15% chicken manure, and 15% tofu liquid waste. The larger the amount of cabbage waste, the lower the biogas production. The quadratic regression analysis was obtained for the variable with the highest yield and the estimated kinetic parameters based on the Gompertz equations revealed that the value of P∞ = 2,795.142 mL/gr.Ts, Rm = 113, 983.777 mL/gr.Ts, and t = 10.2 days. The results also concluded that the use of tofu liquid waste produced more biogas than cabbage waste. This study also successfully showed significant development in terms of the amount of biogas produced by adding organic waste to animal manure as the substrate used.
Fulltext View|Download
Keywords: biogas; anaerobic digestion; tofu liquid waste; cow dung; chicken manure; cabbage waste

Article Metrics:

  1. Adisasmito,S., Rasrendra,C.B., Chandra H,H. & G (2018). Anaerobic reactor for Indonesian tofu wastewater treatment. Int.J.Eng, 7 (3),30-32 https://doi.org/10.14419/ijet.v7i3.26.17456
  2. APHA,1995. Standard Methods for the Examination of Water and Wastewater. 19th ed. Washington DC: American Public Health Association
  3. Ariae, A.R., Jahangiri, M., Fakhr, M.H, & Shamsabadi, A.A. (2019). Simulation of biogas utilization effect on the economic efficiency and greenhouse gas emission: a case study in Isfahan, Iran. International Journal of Renewable Energy Development, 8(2), 149-160 https://doi.org/10.14710/ijred.8.2.149-160
  4. Baserja, U (1984). Biogas production from cowdung: Influene of time and fresh liquid manure. SwissBio Tech, 19-24
  5. Budiyono, B. and Syaichurrozi, I (2020) A review: biogas production from tofu liquid waste. IOP conf. ser., Mater. sci, 845. https://doi.org/10.1088/1757-899X/845/1/012047
  6. Budiyono, B., Widiasa, I. N., Johari, S. & Sunarso (2010) The Influence of Total Solid Contents on Biogas Yield from Cattle Manure Using Rumen Fluid Inoculum. Int. J. Energy Res., 1(1),6-11. https://doi.org/10.3844/erjsp.2010.6.11
  7. Darja, P. and Andreja, G. (2020). Kinetics of methane production during anaerobic digestion of chicken manure with sawdust and miscanthus. Biomass Bioenergy, 143. https://doi.org/10.1016/j.biombioe.2020.105820
  8. Deublein, D. and Steinhauser, A. (2008). Biogas from Waste and Renewable Resource. Weinheim: Wiley-VCH Verlag GmbH dan Co. KGaA. https://doi.org/10.1002/9783527621705
  9. Dhaked , R. K., Singh , P. & Singh , L., 2010. Biomethanation under Psychrophilic conditions. Waste Management, 30, 2490-2496. https://doi.org/10.1016/j.wasman.2010.07.015
  10. Faisal, M., A, G., Mulana, F. & Daimon, H (2016). Effect of organic loading on production of methane biogas from tofu wastewater treated by thermophilic stirred anaerobic reactor. Rasayan J. Chem, 9(2), 133-138
  11. Fulford,D., 2001. Running a biogas programme. United Kingdom: ITDG Publishing
  12. Haryanto, A., Triyono, S., & Wicaksono, N. H. (2018). Effect of Hydraulic Retention Time on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. International Journal of Renewable Energy Development, 7(2), 93-100 https://doi.org/10.14710/ijred.7.2.93-100
  13. Ichsan, I., Hadiyanto, H., and Hendroko, R. (2014). Integrated Biogas-microalgae from Waste Waters as the Potential Biorefinery Sources in Indonesia. Energy Procedia, 47, 143-148 https://doi.org/10.1016/j.egypro.2014.01.207
  14. Igoni, A. H., Ayotamuno, M. J., Eze, C. L. & Ogaji, S (2008). Designs of anaerobic digesters for producing biogas from municipal solid-waste. J. Applied energy, 85(6), 430-438. https://doi.org/10.1016/j.apenergy.2007.07.013
  15. İkram , B., Sezai , A. T. & Seyfettin (2019). Electricity Production from Wind Energy by Piezoelectric Material. Int. Journal of Renewable Energy Development, 8(1), 41-46. https://doi.org/10.14710/ijred.8.1.41-46
  16. Kaparaju, P. & Angelidaki, I. (2008). Effect of temperature and microbial activity on passive separation of digested cattle manure. Bioresour Technol, 99, 4919-4928. https://doi.org/10.1016/j.biortech.2007.09.015
  17. Kresnawaty, I., Susanti, I., Siswanto & Panji, T. (2008). Optimasi Produksi Biogas dari Limbah Lateks Cair Pekat dengan Penambahan Logam. Jurnal menara perkebunan, 14, 18-22
  18. Latinwo, G. K. & Agarry, S. E., 2015. Modelling the Kinetics of Biogas Production from Mesophilic Anaerobic Co-Digestion of Cow Dung with Plantain Peels. Int. J. Energy. Sustain. Dev, 4(1), 55-53. https://doi.org/10.14710/ijred.4.1.55-63
  19. Moraes, B.S., Zaiat, M. and Bonomi, A., (2015). Anaerobic digestion of vinasse from sugarcane ethanol production in Brazil: Challenges and perspectives. Renew. Sust. Energ. Rev, 44(C), 888-903. https://doi.org/10.1016/j.rser.2015.01.023
  20. Ni'mah, L., 2014. Biogas from Solid Waste of Tofu Production and Cow Manure Mixture. Chemica, 1(1). https://doi.org/10.26555/chemica.v1i1.500
  21. Rahmat, B., Hartoyo, T. & Sunarya, Y (2014). Biogas Production From Tofu Liquid Waste On Treated Agricultural Wastes. ARPN J. Agric. Biol. Sci., 9(2), 226-231. https://doi.org/10.3844/ajabssp.2014.226.231
  22. Ramdiana (2017). Pengaruh Variasi Komposisi pada Campuran Limbah Cair Aren dan Kotoran Sapi Terhadap Produksi Biogas. Eksergi, 14(2). https://doi.org/10.31315/e.v14i2.2139
  23. Ridlo, R (2017). PTSEIK-BPPT. [Online] Available at: https://ptseik.bppt.go.id/artikelilmiah/16-dasar-dasar-fermentasi-anaerobik [Accessed 10 October 2020]
  24. Rittmann BE , B. E. & McCarty , P. L., 2001. Environmental biotechnology : principles and applications. New York: McGraw-Hill International
  25. Sakhmetova, G., Brener, A. & Shinibekova, R (2017) Scale-up of the installations for the biogas production and purification. Chem. Eng. Trans., 61,1453-1458
  26. Syaichurrozi, I., Rusdi, Dwicahyanto, S. & Toron, Y. S., (2016). Biogas production from co-digestion vinasse waste and tofu-prosessing waste water and knetics International Journal Renewable Energy Research, 6(3), 1057-1070
  27. Taghinazhad, J., Abdi, R., & Adl, M. (2017). Kinetic and Enhancement of Biogas Production For The Purpose of Renewable Fuel Generation by Co-digestion of Cow Manure and Corn Straw in A Pilot Scale CSTR System. International Journal of Renewable Energy Development, 6(1), 37-44 https://doi.org/10.14710/ijred.6.1.37-44
  28. Tchobanoglous, G., Burton, F. & Stensel , H., 2003. Wastewater engineering treatment and reuse. 4 ed. New York: McGraw-Hill
  29. Wahyudi, Cante, B., Mustafa & Sahraeni, S (2020). Pengaruh Jarak Reaktor Terhadap Penurunan Kadar COD dan TSS Pada Limbah Tahu di Kota Samarinda. Jurnal Politeknik Negeri Balikpapan, 179-186
  30. Wang, H., Xu, J., Sheng, L. & Liu, X. (2018) Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy Elsevier, 165, 411-418. https://doi.org/10.1016/j.energy.2018.09.196
  31. Wellinger, A. & Linberg, A., 2000. Biogas upgrading and utilization. France: International Energy Assosiation

Last update:

  1. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters

    Van Ga Bui, Thi Minh Tu Bui, Van Nam Tran, Zuohua Huang, Anh Tuan Hoang, Wieslaw Tarelko, Van Hung Bui, Xuan Mai Pham, Phuoc Quy Phong Nguyen. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.09.133
  2. Investigating Methane, Carbon Dioxide, Ammonia, and Hydrogen Sulphide Content in Agricultural Waste during Biogas Production

    Ephodia Sihlangu, Dibungi Luseba, Thierry Regnier, Primrose Magama, Idan Chiyanzu, Khathutshelo Agree Nephawe. Sustainability, 16 (12), 2024. doi: 10.3390/su16125145
  3. Livestock waste as alternative energy for rural households: A review

    D Sahara. IOP Conference Series: Earth and Environmental Science, 1292 (1), 2024. doi: 10.1088/1755-1315/1292/1/012002
  4. Sustainable synergy: unleashing the potential of biomass in integrated biorefineries

    Muhammad Kashif, Muhammad Ashraf Sabri, Michele Aresta, Angela Dibenedetto, Franck Dumeignil. Sustainable Energy & Fuels, 2025. doi: 10.1039/D4SE01293C
  5. Concept of twining injector system for spark-ignition engine fueled with syngas-biogas-hydrogen operating in solar-biomass hybrid energy system

    Van Ga Bui, Thi Minh Tu Bui, Van Giao Nguyen, Van Nam Tran, Le Bich Tram Truong, Le Hoang Phu Pham. International Journal of Hydrogen Energy, 48 (18), 2023. doi: 10.1016/j.ijhydene.2022.11.076
  6. Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions

    Siswo Sumardiono, Bakti Jos, Agata Advensia Eksa Dewanti, Isa Mahendra, Heri Cahyono. Energies, 14 (15), 2021. doi: 10.3390/en14154664
  7. Empowering the Community in the Use of Livestock Waste Biogas as a Sustainable Energy Source

    Ayu Intan Sari, Suwarto Suwarto, Suminah Suminah, Sutrisno Hadi Purnomo. Sustainability, 14 (21), 2022. doi: 10.3390/su142114121
  8. Performance analysis of biomass direct combustion heating and centralized biogas supply system for rural districts in China

    Jinping Li, Chang Gan, Jianjian Zhou, Vojislav Novakovic. Energy Conversion and Management, 278 , 2023. doi: 10.1016/j.enconman.2023.116730
  9. Performance and emission characteristics of diesel engines running on gaseous fuels in dual-fuel mode

    Van Nhanh Nguyen, Swarup Kumar Nayak, Huu Son Le, Jerzy Kowalski, Balakrishnan Deepanraj, Xuan Quang Duong, Thanh Hai Truong, Viet Dung Tran, Dao Nam Cao, Phuoc Quy Phong Nguyen. International Journal of Hydrogen Energy, 49 , 2024. doi: 10.1016/j.ijhydene.2023.09.130
  10. Track to reach net-zero: Progress and pitfalls

    Suhaib A Bandh, Fayaz A Malla, Tuan-Dung Hoang, Irteza Qayoom, Haika Mohi-Ud-Din, Shahnaz Bashir, Richard Betts, Thanh Tuan Le, Duc Trong Nguyen Le, Nguyen Viet Linh Le, Huu Cuong Le, Dao Nam Cao. Energy & Environment, 2024. doi: 10.1177/0958305X241260793

Last update: 2024-12-11 08:31:28

No citation recorded.