Design and Economic Analysis of a Photovoltaic System: A Case Study

*COC Oko  -  Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, PMB 5323, Port Harcourt,, Nigeria
E.O Diemuodeke  -  Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, PMB 5323, Port Harcourt,, Nigeria
E.O Omunakwe  -  Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, PMB 5323, Port Harcourt,, Nigeria
E Nnamdi  -  Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, PMB 5323, Port Harcourt,, Nigeria
Published: 30 Oct 2012.
Open Access Copyright (c) 2012 International Journal of Renewable Energy Development


Citation Format:
Abstract

This paper presents the design analysis of a photovoltaic (PV) system to power the CAD/CAM Laboratory at the Department of Mechanical Engineering, University of Port Harcourt. Life cycle cost and break-even point analyses are also carried out to assess the economic viability of the system. The unit cost of electricity for the designed PV system is high compared to the current unit cost of the municipally supplied electricity, but will be competitive with lowering cost of PV system components and favourable government policies on renewable energy. The approach and data provided are useful for designing solar systems in the area. The automated MS Excel spreadsheet developed could be used for the design and economic analyses of PV system in any other geographical region once the input data are sorted. Since about 90% of businesses in Nigeria currently own diesel generators, it is expected that future work should be devoted to the optimum combination of PV-Battery-Diesel system in electricity generation for optimum economic benefits to the country.

 

Keywords: photovoltaic system design, renewable energy technology, solar energy economics

Article Metrics:

  1. Energy Sector Management Assistance Program (2005) Nigeria: Expanding Access to Rural Infrastructure Issues and Options for Rural Electrification, Water Supply and Telecommunications, International Bank for Reconstruction and Development, World Bank, Washington D.C
  2. Angelis-Dimakis A, Biberacher M, Dominguez J, Fiorese G, Gadocha S, Gnansounou E, Guariso G, Kartalidis A, Panichelli L, Pinedo I, and Robba M (2011) Methods and tools to evaluate the availability of renewable energy sources. J. Renewable and Sust. Energy Reviews Vol.15: 1182-1200
  3. Kolhe M, Kolhe S, and Joshi JC (2002) Economic Viability of Stand-alone Solar Photovoltaic System in Comparison with Diesel-powered System for India. J. Energy Economics, 24 (2): 155-165
  4. Ajan CW, Ahmed SS, Ahmad HBTF, and Mohd Zin AAB (2003) On the policy of photovoltaic and diesel generation mix for an off-grid site: East Malaysian perspectives. J. Solar Energy, 74: 453-467
  5. Nafeh AA (2009) Design and Economic Analysis of a stand-alone PV system to electrify a remote area household in Egypt. Open Renewable Energy Journal, 2: 33-37
  6. Markvart T (2000) Solar Electricity, Wiley, London
  7. Ojosu JO (1990) The Iso-radiation Map for Nigeria. J. Solar and Wind Tech., 7 (5): 563-575
  8. Augustine C and Nnabuchi MN (2009) Relationship between global solar radiation and sunshine hours for Calabar, Port Harcourt and Enugu, Nigeria. Int. Journal of Physical Sci., 4 (4): 182-188
  9. Assad A (2010) A Stand-Alone Photovoltaic System, Case Study: A Residence in Gaza. J. of Applied Sciences in Environmental Sanitation, 5 (1): 81-91
  10. Abd El-Shafy AN (2009) Design and Economic Analysis of a Stand-Alone PV System to Electrify a Remote Area Household in Egypt. The Open Ren. Energy Journal, 2: 33-37
  11. Alamsyah TMI, Sopian K, Shahrir A (2003) In Technoeconomics Analysis of a Photovoltaic System to Provide Electricity for a Household in Malaysia. Proceedings in International Symposium on Renewable Energy: Environment Protection & Energy Solution for Sustainable Development, Kuola Lumpur, 387-396
  12. Oko COC and Ogoloma OB (2011) Generation of Typical Meteorological Year for Port Harcourt Zone. Journal of Engineering Science and Technology, 6(2): 204-214
  13. Wenham SR, Green MA, Watt ME (1994) Applied Photovoltaics, Centre for Photovoltaic Devices and Systems, Sydney
  14. Mahmoud MM, Ibrik IH (2006) Techno-economic Feasibility of Energy Supply to Remote Villages in Palestine by PV-Systems, Diesel Generator and Electri Grid. Renewable Sustainable Energy Rev., 10: 128-138
  15. Messenger R, and Ventre J (2000) Photovoltaic Systems Engineering, CRC Press LLC: Boca Raton, Florida
  16. Al-Smairan M, Al-Adamat R, and Al-Nhoud O (2012) Techno-Economic Feasibility of Energy Supply of Remote Dump Site in Jordan Badia by Photovoltaic Systems, Diesel Generators and Electrical Grid. Research Journal of Applied Sciences, Engineering and Technology, Vol. 4(9): 1073-1081
  17. Oko COC and Nnamchi SN (2012) Optimum Collector Tilt Angles for Low Latitudes. The Open Renewable Energy Journal, 5: 7-14
  18. Trading Economics (2011) World Economic Index, www.tradingeconomics.com/nigeria [accessed 06/11/11]

Last update: 2021-04-09 19:55:02

  1. Solar power energy solutions for Yemeni rural villages and desert communities

    Morshed Hadwan, Abdulsalam Alkholidi. Renewable and Sustainable Energy Reviews, 57 , 2016. doi: 10.1016/j.rser.2015.12.125
  2. Optimal Hybrid PV-Battery-Diese Generator Energy System for the Oil Producing Communities in Niger-Delta, Nigeria: A Case Study

    E.O. Diemuodeke, I.M. Okorho. Distributed Generation & Alternative Energy Journal, 31 (3), 2016. doi: 10.1080/21563306.2016.11744003
  3. Simulation of control and measurement systems for dc-ac inverter

    Iurii Kabalyk, Alina Gutsol, A. Zheltenkov. E3S Web of Conferences, 91 , 2019. doi: 10.1051/e3sconf/20199101008
  4. Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing

    Energies, 13 (22), 2020. doi: 10.3390/en13226018
  5. Optimal sizing and assessment of a hybrid energy based AC microgrid

    S. Madhura, Venkatesh Boddapati. Materials Today: Proceedings, 2021. doi: 10.1016/j.matpr.2021.02.133
  6. Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities

    E.N. Nyeche, E.O. Diemuodeke. Journal of Cleaner Production, 127 , 2020. doi: 10.1016/j.jclepro.2019.119578
  7. Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant

    O.J. Ogorure, C.O.C. Oko, E.O. Diemuodeke, K. Owebor. Energy Conversion and Management, 127 , 2018. doi: 10.1016/j.enconman.2018.05.093
  8. An Optimal Rural Community PV Microgrid Design Using Mixed Integer Linear Programming and DBSCAN Approach

    Jane Namaganda-Kiyimba, Joseph Mutale. SAIEE Africa Research Journal, 111 (3), 2020. doi: 10.23919/SAIEE.2020.9142604
  9. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review

    R.K. Akikur, R. Saidur, H.W. Ping, K.R. Ullah. Renewable and Sustainable Energy Reviews, 27 , 2013. doi: 10.1016/j.rser.2013.06.043
  10. Thermoeconomic analysis of agro-wastes combined cooling, heating and power ORC plant for agrarian rural communities

    J. C. Ofodu, O. A. Ophori, E. O. Diemuodeke. International Journal of Ambient Energy, 2019. doi: 10.1080/01430750.2019.1587721
  11. Techno-economic analysis of utilizing wind energy for water pumping in some selected communities of Oyo State, Nigeria

    T.R. Ayodele, A.S.O. Ogunjuyigbe, T.O. Amusan. Renewable and Sustainable Energy Reviews, 91 , 2018. doi: 10.1016/j.rser.2018.03.026
  12. Thermodynamic and economic analysis of a Kalina system with integrated lithium-bromide-absorption cycle for power and cooling production

    Energy Reports, 6 , 2020. doi: 10.1016/j.egyr.2020.07.021
  13. Optimal thermal power plant selection for a tropical region using multi-criteria decision analysis

    Ifeanyi Henry Njoku, Chika O.C. Oko, Joseph C. Ofodu, Ogheneruona E. Diemuodeke. Applied Thermal Engineering, 127 , 2020. doi: 10.1016/j.applthermaleng.2020.115706
  14. Exergoeconomic analysis of cascaded organic power plant for the Port Harcourt climatic zone, Nigeria

    C.O.C. Oko, M.M. Deebom, E.O. Diemuodeke, Duc Pham. Cogent Engineering, 3 (1), 2016. doi: 10.1080/23311916.2016.1227127
  15. Solar-Inverter System Design Strategies and Considerations

    E.E. Atimati, Joe-Uzuegbu, J.O. Onojo, I.E. Achumba, G.A. Chukwudebe. 2019 IEEE PES/IAS PowerAfrica, 2019. doi: 10.1109/PowerAfrica.2019.8928738
  16. Solar Power Generation System Design: Case Study of North Sumatra Muhammadiyah University Building

    Elvy Sahnur Nasution, Arnawan Hasibuan, Widyana Verawaty Siregar, Rohana Ismail. 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 2020. doi: 10.1109/ELTICOM50775.2020.9230526
  17. Photovoltaic system design, feasibility and financial outcomes for different regions in Turkey

    V.A. Kayhan, F. Ulker, O. Elma. 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), 2015. doi: 10.1109/EPECS.2015.7368518
  18. Optimal Sizing and Analysis of Solar PV, Wind, and Energy Storage Hybrid System for Campus Microgrid

    Furkan Ahmad, Mohammad Saad Alam. Smart Science, 6 (2), 2018. doi: 10.1080/23080477.2017.1417005
  19. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm

    E.O. Diemuodeke, A. Addo, C.O.C. Oko, Y. Mulugetta, M.M. Ojapah. Renewable Energy, 127 , 2019. doi: 10.1016/j.renene.2018.11.055
  20. Hybrid-generation system calculator for isolated and residential communities

    Thulani H. Ndaba, Andre T Zau, Thabo Mashee, S.P. Daniel Chowdhury. 2019 IEEE AFRICON, 2019. doi: 10.1109/AFRICON46755.2019.9133985
  21. Thermo-economic analysis of an ocean thermal power plant for a Nigerian coastal region

    C. O. C. Oko, W. B. Obeneme. International Journal of Ambient Energy, 39 (6), 2018. doi: 10.1080/01430750.2017.1318789
  22. Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification

    Energies, 12 (24), 2019. doi: 10.3390/en12244735
  23. Design and economics analysis of an off-grid PV system for household electrification

    Abdul Ghafoor, Anjum Munir. Renewable and Sustainable Energy Reviews, 42 , 2015. doi: 10.1016/j.rser.2014.10.012
  24. Thermo-economic analysis of a waste-to-energy integrated multi-generation power plant

    C. O. C. Oko, C. O. Nwachukwu. International Journal of Ambient Energy, 41 (3), 2020. doi: 10.1080/01430750.2018.1472638
  25. Optimum configuration and design of a photovoltaic–diesel–battery hybrid energy system for a facility in University of Port Harcourt, Nigeria

    E.O. Diemuodeke, C.O.C. Oko. International Journal of Ambient Energy, 37 (1), 2016. doi: 10.1080/01430750.2013.866906
  26. Optimal Allocation of Reactive Power Compensation in a Distribution Network with Photovoltaic System Integration

    Sohair M. Allam, Tamer Fetouh, Asmaa A. Ebrahim. 2019 21st International Middle East Power Systems Conference (MEPCON), 2019. doi: 10.1109/MEPCON47431.2019.9008219
  27. Smart Grid and Innovative Frontiers in Telecommunications

    Abdulrahim Hamed S. Alghamdi, Carlos Henrique Marciano Rodrigues Castro, Ramon Zamora. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 127 , 2018. doi: 10.1007/978-3-319-94965-9_22

Last update: 2021-04-09 19:55:02

  1. Solar power energy solutions for Yemeni rural villages and desert communities

    Morshed Hadwan, Abdulsalam Alkholidi. Renewable and Sustainable Energy Reviews, 57 , 2016. doi: 10.1016/j.rser.2015.12.125
  2. Performance of a solar PV tracking system on tropic regions

    Garcia Y.. WIT Transactions on Ecology and the Environment, 127 , 2015. doi: 10.2495/ESUS150171
  3. Optimal Hybrid PV-Battery-Diese Generator Energy System for the Oil Producing Communities in Niger-Delta, Nigeria: A Case Study

    E.O. Diemuodeke, I.M. Okorho. Distributed Generation & Alternative Energy Journal, 31 (3), 2016. doi: 10.1080/21563306.2016.11744003
  4. Simulation of control and measurement systems for dc-ac inverter

    Iurii Kabalyk, Alina Gutsol, A. Zheltenkov. E3S Web of Conferences, 91 , 2019. doi: 10.1051/e3sconf/20199101008
  5. Assessment of Decentralized Electricity Production from Hybrid Renewable Energy Sources for Sustainable Energy Development in Nigeria

    Oyedepo S.. Open Engineering, 9 (1), 2019. doi: 10.1515/eng-2019-0009
  6. Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities

    E.N. Nyeche, E.O. Diemuodeke. Journal of Cleaner Production, 127 , 2020. doi: 10.1016/j.jclepro.2019.119578
  7. Energy, exergy, environmental and economic analysis of an agricultural waste-to-energy integrated multigeneration thermal power plant

    O.J. Ogorure, C.O.C. Oko, E.O. Diemuodeke, K. Owebor. Energy Conversion and Management, 127 , 2018. doi: 10.1016/j.enconman.2018.05.093
  8. Design of Photo Voltaic (PV) Solar Power Plant to Supply Electricity and to Pump Water to Chele Community

    Puati Zau A.. 2018 IEEE PES/IAS PowerAfrica, PowerAfrica 2018, 2018. doi: 10.1109/PowerAfrica.2018.8521177
  9. Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review

    R.K. Akikur, R. Saidur, H.W. Ping, K.R. Ullah. Renewable and Sustainable Energy Reviews, 27 , 2013. doi: 10.1016/j.rser.2013.06.043
  10. Thermoeconomic analysis of agro-wastes combined cooling, heating and power ORC plant for agrarian rural communities

    J. C. Ofodu, O. A. Ophori, E. O. Diemuodeke. International Journal of Ambient Energy, 2019. doi: 10.1080/01430750.2019.1587721
  11. Techno-economic analysis of utilizing wind energy for water pumping in some selected communities of Oyo State, Nigeria

    T.R. Ayodele, A.S.O. Ogunjuyigbe, T.O. Amusan. Renewable and Sustainable Energy Reviews, 91 , 2018. doi: 10.1016/j.rser.2018.03.026
  12. Thermodynamic and economic analysis of a Kalina system with integrated lithium-bromide-absorption cycle for power and cooling production

    Energy Reports, 6 , 2020. doi: 10.1016/j.egyr.2020.07.021
  13. Performance analysis of FLC controlled PV-wind hybrid power system for dc load with real-time data in Matlab, Simulink

    Pavan Kumar A.. Journal of Electrical and Electronics Engineering, 10 (1), 2017.
  14. Review of cost optimization of electricity supply by using HOMER and a case study for a big commercial customer in Brazilian Amazon area

    Alghamdi A.. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 127 , 2018. doi: 10.1007/978-3-319-94965-9_22
  15. Optimal thermal power plant selection for a tropical region using multi-criteria decision analysis

    Ifeanyi Henry Njoku, Chika O.C. Oko, Joseph C. Ofodu, Ogheneruona E. Diemuodeke. Applied Thermal Engineering, 127 , 2020. doi: 10.1016/j.applthermaleng.2020.115706
  16. Use of Data Acquisition for Rapid Feasibily Check of PV Based Illumination Systems

    Mabunda N.E.. IEEE AFRICON Conference, 127 , 2019. doi: 10.1109/AFRICON46755.2019.9134011
  17. Exergoeconomic analysis of cascaded organic power plant for the Port Harcourt climatic zone, Nigeria

    C.O.C. Oko, M.M. Deebom, E.O. Diemuodeke, Duc Pham. Cogent Engineering, 3 (1), 2016. doi: 10.1080/23311916.2016.1227127
  18. Solar-Inverter System Design Strategies and Considerations

    E.E. Atimati, Joe-Uzuegbu, J.O. Onojo, I.E. Achumba, G.A. Chukwudebe. 2019 IEEE PES/IAS PowerAfrica, 2019. doi: 10.1109/PowerAfrica.2019.8928738
  19. Design considerations of stand-alone solar photovoltaic systems

    Ali W.. 2018 International Conference on Computing, Electronic and Electrical Engineering, ICE Cube 2018, 2019. doi: 10.1109/ICECUBE.2018.8610970
  20. Design and power quality improvement of photovoltaic power system

    Elbaset A.A.. Design and Power Quality Improvement of Photovoltaic Power System, 2016. doi: 10.1007/978-3-319-47464-9
  21. Solar Power Generation System Design: Case Study of North Sumatra Muhammadiyah University Building

    Elvy Sahnur Nasution, Arnawan Hasibuan, Widyana Verawaty Siregar, Rohana Ismail. 2020 4rd International Conference on Electrical, Telecommunication and Computer Engineering (ELTICOM), 2020. doi: 10.1109/ELTICOM50775.2020.9230526
  22. Design and optimization of stand-alone PV system for Egyptian rural communities

    El Shenawy E.. International Journal of Applied Engineering Research, 12 (20), 2017.
  23. Photovoltaic system design, feasibility and financial outcomes for different regions in Turkey

    V.A. Kayhan, F. Ulker, O. Elma. 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS), 2015. doi: 10.1109/EPECS.2015.7368518
  24. Optimal Sizing and Analysis of Solar PV, Wind, and Energy Storage Hybrid System for Campus Microgrid

    Furkan Ahmad, Mohammad Saad Alam. Smart Science, 6 (2), 2018. doi: 10.1080/23080477.2017.1417005
  25. Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm

    E.O. Diemuodeke, A. Addo, C.O.C. Oko, Y. Mulugetta, M.M. Ojapah. Renewable Energy, 127 , 2019. doi: 10.1016/j.renene.2018.11.055
  26. Hybrid-generation system calculator for isolated and residential communities

    Thulani H. Ndaba, Andre T Zau, Thabo Mashee, S.P. Daniel Chowdhury. 2019 IEEE AFRICON, 2019. doi: 10.1109/AFRICON46755.2019.9133985
  27. Thermo-economic analysis of an ocean thermal power plant for a Nigerian coastal region

    C. O. C. Oko, W. B. Obeneme. International Journal of Ambient Energy, 39 (6), 2018. doi: 10.1080/01430750.2017.1318789
  28. Design, Simulation, and Economic Optimization of an Off-Grid Photovoltaic System for Rural Electrification

    Energies, 12 (24), 2019. doi: 10.3390/en12244735
  29. Design and economics analysis of an off-grid PV system for household electrification

    Abdul Ghafoor, Anjum Munir. Renewable and Sustainable Energy Reviews, 42 , 2015. doi: 10.1016/j.rser.2014.10.012
  30. Thermo-economic analysis of a waste-to-energy integrated multi-generation power plant

    C. O. C. Oko, C. O. Nwachukwu. International Journal of Ambient Energy, 41 (3), 2020. doi: 10.1080/01430750.2018.1472638
  31. Optimum configuration and design of a photovoltaic–diesel–battery hybrid energy system for a facility in University of Port Harcourt, Nigeria

    E.O. Diemuodeke, C.O.C. Oko. International Journal of Ambient Energy, 37 (1), 2016. doi: 10.1080/01430750.2013.866906
  32. Thermo-environmental and economic analysis of an integrated municipal waste-to-energy solid oxide fuel cell, gas-, steam-, organic fluid- and absorption refrigeration cycle thermal power plants

    Owebor K.. Applied Energy, 127 , 2019. doi: 10.1016/j.apenergy.2019.02.032
  33. Optimal Allocation of Reactive Power Compensation in a Distribution Network with Photovoltaic System Integration

    Sohair M. Allam, Tamer Fetouh, Asmaa A. Ebrahim. 2019 21st International Middle East Power Systems Conference (MEPCON), 2019. doi: 10.1109/MEPCON47431.2019.9008219