skip to main content

Scale up sediment microbial fuel cell for powering Led lighting

Department of Electrical Engineering, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India, India

Published: 18 Feb 2018.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Sediment microbial fuel cells (SMFCs) are expected to be utilized as a sustainable power source for remote environmental observing 30 day’s investigations of experiment to understand the long-term performance of SMFCs. The point of this investigation is to increase power generation, 8 individual sediment microbial fuel cells is stacked together either in series or in hybrid connection. Two combinations, of the hybrid connection, are proving to be the more effective one, step-up both the voltage and current of the framework, mutually. Polarization curve tests are done for series and hybrid connected sediment microbial fuel cell. The maximum study state voltage and current are obtained 8.150V and 435.25µA from series and 4.078V and 870.75µA hybrid connected SMFC. This study suggests that power of SMFC scale-up by connecting series and hybrid for practical use of the device.

Article History: Received : September 26th 2017; Received: December 24th 2017; Accepted: January 4th 2018; Available online

How to Cite This Article: Prasad, J and Tripathi, R.K. (2018) Scale Up Sediment Microbial Fuel Cell For Powering Led Lighting. International Journal of Renewable Energy Development, 7(1), 53-58.

https://doi.org/10.14710/ijred.7.1.53-58

 

Fulltext View|Download
Keywords: sediment microbial fuel cell ;series; hybrid connection, open circuit voltage; Power source
Funding: Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh 211004, India

Article Metrics:

  1. Abazarian, E., Gheshlaghi, R., Mahdavi, M.A. (2016). The effect of number and configuration of sediment microbial fuel cells on their performance in an open channel architecture, Journal of Power Sources 325,739-744
  2. Aelterman P., Rabaey K., Pham H. T.(2006).Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Journal of Environmental Science and Technology, 40(10),3388-3394
  3. Aelterman, P., Rabaey,K., Pham,H.T., Boon,N. and Verstraete,W. (2006).Continuous electricity generation at high voltages and currents using stacked microbial fuel cells, Environmental Science & Technology, 40, 3388–3394
  4. Aller R.C. (1994).The sedimentary Mn cycle in long-island sound – its role as intermediate oxidant and the influence of Bioturbation, O2, and C (Org) flux on diagenetic reaction balances,Journal of Marine Research, 52, 259–95
  5. Ateya B.G., Al-Kharafi F.M. (2002).Anodic oxidation of sulfide ions from chloride brines, Electrochemistry Communications, 4, 231–8
  6. Bond, D.R., Lovely, D.R. (2003). Electricity production by Geobacter sulfur reducens attached to electrodes, Applied Environmental Microbiology, 69, 1548–1555
  7. Chaudhuri S.K., Lovely, D.R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nature Biotechnology, 21, 1229–1232
  8. Dewan A., Ay S, Karim N, Beyenal H. (2014). Alternative power sources for remote sensors: a review, Journal Power Sources, 245,129–43
  9. Donovan C, Dewan A, Heo D, Lewandowski Z, Beyenal H. (2013).Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. Journal Power Sources, 233:79–85
  10. Donovan C., Dewan A, Heo D, Beyenal H. (2008).Batteryless, wireless sensor powered by a sediment microbial fuel cell, Environmental Science Technology, 42:8591–6
  11. Ewing, T., Ha, P.T., Babauta, J.T., Tang, N.T., Heo, D., Beyenal, H. (2014).Scale-up of sediment microbial fuel cells, Journal Power Sources 272 , 311-319
  12. Gil G. C.,Chang I S, Kim B.H.(2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell, Journal of Biosensors and Bioelectronics, 18(4):327-334
  13. Greenman, J.I. and Melhuish, C. (2010).Improved energy output levels from small scale microbial fuel cells, Bioelectrochemistry, 78:44–50
  14. Greenman, J.I. and Melhuish,C. (2008).Microbial fuel cells based on carbon veilelectrodes: Stack configuration and scalability, International Journal of Energy Research, 32:1228–1240
  15. Jiang, D., Li, B., Jia, W., Lei, Y. (2010). Effect of inoculum type on bacterial adhesion and power production in microbial fuel cells,Applied Biochemistry and Biotechnology, 160, 182–196
  16. Kim H. J., Park H. S., Hyun M.S. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, shewanella putrefaciens, Journal Enzyme and Microbial Technology,30(2), 145-152
  17. Kim H.J., Hyun, M.S., Chang, I.S., Kim, B.H. (1999). A microbial fuel cell type lacase biosensor using a metal-reducing bacterium, Shewanella putrefaciens,Journal of Microbiology and Biotechnology, 9, 365–367
  18. Kreuer, K.D. (2013) Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer, Fuel Cells, New York
  19. Lemuel B. Wingard, Ching.H. Shaw, James.F. Castne, Bioelectrochemical fuel cells, Journal Enzyme and Microbial Technology, Volume 4,1982,137-142
  20. Liu, H., Ramnarayanan, R., and Logan, B. E.(2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell,Environmental Science & Technology, 38:2281–2285
  21. Majumder, D., Maity, J.P., Chen, C.Y., Chen, C.C., Yang, T.C., Chang, Y.F., Hsu, D.W. and Chen, H.R. (2014). Electricity generation with a sediment microbial fuel cell equipped with an air-cathode system using photo bacterium, International journal of Hydrogen Energy 39, 21215-21222
  22. Oh, S.E., Logan, B.E.(2007).Voltage reversal during microbial fuel cell stack operation,Journal of Power Sources , 167 : 11–17
  23. Panwar, N.L, Kaushik, S.C., Kothari,S. (2011). Role of renewable energy sources in environmental protection: a review, Renewable & Sustainable Energy Reviews, 15, 1513-1524
  24. Reimers C.E., Girguis P, Stecher HA, Tender LM, Ryckelynck N, Whaling P. (2006).Microbial fuel cell energy from an ocean cold seep, Geobiology, 4, 123–36
  25. Reimers C.E., Tender L M, Fertig S.(2001). Harvesting energy from the marine sediment-water interface,Journal Environmental Science & Technology, 35(1), 192-195
  26. Reimers, C.E., Tender L.M., Fertig, S. and Wang, W. (2001). Harvesting Energy from the Marine Sediment-Water Interface,Journal, Environmental Sciences and Technology, 35(1), 192-195
  27. Ren, H., Torres,C., Parameswaran, P., Rittmann, B.E. and Chae, J. (2014). Improved current and power density with a micro-scale microbial fuel cell due to a small characteristic length, Biosensors and Bioelectronics, 61, 587–592588
  28. Rismani-Yazdi H., Christy, A.D., Dehority, B.A., Morrison, M., Yu, Z., Tuovinen, O.H. (2007).Electricity generation from cellulose by rumen microorganisms in microbial fuel cells, Biotechnology and Bioengineering, 97, 1398–1407
  29. Tender L.M., Gray S.A., Groveman E., Lowy D.A., Kauffman P., Melhado J., et al. (2008). The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy, Journal Power Sources, 179:571–5
  30. Wang, D.B., Song, T.S., Guo, T., Zeng, Q., Xie, J. (2014). Electricity generation from sediment microbial fuel cells with algae-assisted cathodes, International Journal Hydrogen Energy, 39, 13224-13230
  31. Wotawa-Bergen, A.Q., Chadwick, D.B., Richter, K.E., Tender, L.M., Reimers, C.E. and Gong, Y. (2010). Operational testing of sediment microbial fuel cells in San Diego Bay,OCEAN, MTS/IEEE SEATTLE, Seattle, WA, 2010, pp. 1-6
  32. Xu, X., Zhao, O., Wu, M., Ding, J., Zhang,W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition, Bioresource Technology 225 , 402–408
  33. Zainab Z. Ismail and Ali A. Habeeb (2017).Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers, Renewable Energy, 101 , 1256-1265
  34. Zhang G., Zhao, Q., Jiao, Y., Wang, K., Lee, D.J., Ren, N. (2012). Efficient electricity generation from sewage sludge using bio cathode microbial fuel cell, Water Research,46, 43–52
  35. Zhang, H., Zhu,D., Song,T.S. Ouyang, P. and Xie, J.(2015). Effects of the presence of sheet iron in fresh water sediment on the performance of a sediment microbial fuel cell, international journal of hydrogen energy 40 , 16566 -1657
  36. Zhou, Y.-L., Yang, Y., Chen, M., Zhao, Z.-W., Jiang, H.L.(2014). To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments, Bioresource Technology 159, 232-239

Last update:

  1. Power performance improvement in sediment microbial fuel cells: Recent advances and future challenges

    Hang Wang, Yixuan Ye, Jinhui Zhang, Haiyan Ning, Yu Xiang, Xiaoming Song, Wangyi Zhao, Fei Guo. International Journal of Hydrogen Energy, 48 (63), 2023. doi: 10.1016/j.ijhydene.2023.03.291
  2. Wastewater Treatment [Working Title]

    Edward Kwaku Armah, Maggie Chetty, Jeremiah Adebisi Adedeji, Donald Tyoker Kukwa, Boldwin Mutsvene, Khaya Pearlman Shabangu, Babatunde Femi Bakare. 2020. doi: 10.5772/intechopen.93898
  3. Voltage Drop Management and Step Up The Voltage of Sediment Microbial Fuel Cells

    Jeetendra Prasad, Ramesh Kumar Tripathi. 2018 8th IEEE India International Conference on Power Electronics (IICPE), 2018. doi: 10.1109/IICPE.2018.8709564
  4. Effect of sediment microbial fuel cell stacks on 9 V/12 V DC power supply

    Jeetendra Prasad, Ramesh Kumar Tripathi. International Journal of Hydrogen Energy, 46 (27), 2021. doi: 10.1016/j.ijhydene.2020.07.187
  5. Energy harvesting from sediment microbial fuel cell to supply uninterruptible regulated power for small devices

    Jeetendra Prasad, Ramesh Kumar Tripathi. International Journal of Energy Research, 43 (7), 2019. doi: 10.1002/er.4370
  6. Electrical current generation from a continuous flow macrophyte biocathode sediment microbial fuel cell (mSMFC) during the degradation of pollutants in urban river sediment

    Felix Tetteh Kabutey, Jing Ding, Qingliang Zhao, Philip Antwi, Frank Koblah Quashie. Environmental Science and Pollution Research, 27 (28), 2020. doi: 10.1007/s11356-020-09812-y
  7. Microbial Electrochemical Technologies

    Yamini Mittal, Saurabh Dwivedi, Supriya Gupta, Rupobrata Panja, Palak Saket, Ashmita Patro, Tanveer Saeed, Fernando Martínez, Asheesh Kumar Yadav. 2023. doi: 10.1002/9783527839001.ch17
  8. Promising Techniques for Wastewater Treatment and Water Quality Assessment

    Edward Kwaku Armah, Maggie Chetty, Jeremiah Adebisi Adedeji, Donald Tyoker Kukwa, Boldwin Mutsvene, Khaya Pearlman Shabangu, Babatunde Femi Bakare. 2021. doi: 10.5772/intechopen.93898
  9. Enhancing microbial fuel cell performance with carbon powder electrode modifications for low-power sensors modules

    Mohammed Adel Al-badani, Peng Lean Chong, Heng Siong Lim. International Journal of Renewable Energy Development, 13 (1), 2024. doi: 10.14710/ijred.2024.58977
  10. A Sustainable Green Future

    Basak Tugcu, Yunus Celik, Cagla Yarkent, Ceren Gurlek, Ayse Kose, Suphi S. Oncel. 2023. doi: 10.1007/978-3-031-24942-6_29
  11. A Dc-Dc Boost Converter for Sediment Microbial Fuel Cell Energy Harvesting

    Jeetendra Prasad, Ramesh Kumar Tripathi. 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2018. doi: 10.1109/ICPEICES.2018.8897432
  12. Microbial fuel cells as an electrical energy source for degradation followed by decolorization of Reactive Black 5 azo dye

    Kristina Joksimović, Igor Kodranov, Danijela Randjelović, Latinka Slavković Beškoski, Jelena Radulović, Marija Lješević, Dragan Manojlović, Vladimir P. Beškoski. Bioelectrochemistry, 145 , 2022. doi: 10.1016/j.bioelechem.2022.108088
  13. Estudio estadístico de la influencia de la distribución geométrica del cátodo en la producción de energía eléctrica en una celda de combustible microbiana de sedimentos

    Marlenne Feregrino-Rivas, Blenda Ramírez-Pereda, Francisco Estrada-Godoy. REVISTA DE CIENCIAS TECNOLÓGICAS, 5 (1), 2022. doi: 10.37636/recit.v518095
  14. Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production

    Ika Dyah Widharyanti, Muhammad Andiri Hendrawan, Marcelinus Christwardana. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32403
  15. Optimization of electricity generation from marine sediment of Kendari Bay using stacked sediment microbial fuel cell

    R Sudarman, A Zaeni, I Usman, Alwahab, I Hidayatulloh. Journal of Physics: Conference Series, 1450 (1), 2020. doi: 10.1088/1742-6596/1450/1/012111
  16. Optimization of microbial fuel cell operation using Danube River sediment

    Kristina Joksimović, Aleksandra Žerađanin, Danijela Randjelović, Jelena Avdalović, Srdjan Miletić, Gordana Gojgić-Cvijović, Vladimir P. Beškoski. Journal of Power Sources, 476 , 2020. doi: 10.1016/j.jpowsour.2020.228739
  17. Scale Up of a Marine Sediment Microbial Fuel Cells Stack with a Floating Aerated Cathode Using a Circuit Storage Energy from Ultra-Low Power

    Nancy González-Gamboa, Raúl Tapia-Tussell, Sathish Kumar Kamaraj, David Valdés-Lozano, Jorge Domínguez-Maldonado, Liliana Alzate-Gaviria. Waste and Biomass Valorization, 12 (7), 2021. doi: 10.1007/s12649-020-01289-7

Last update: 2024-03-19 16:46:04

  1. Voltage Drop Management and Step Up The Voltage of Sediment Microbial Fuel Cells

    Jeetendra Prasad, Ramesh Kumar Tripathi. 2018 8th IEEE India International Conference on Power Electronics (IICPE), 2018. doi: 10.1109/IICPE.2018.8709564
  2. Energy harvesting from sediment microbial fuel cell to supply uninterruptible regulated power for small devices

    Jeetendra Prasad, Ramesh Kumar Tripathi. International Journal of Energy Research, 43 (7), 2019. doi: 10.1002/er.4370
  3. Electrical current generation from a continuous flow macrophyte biocathode sediment microbial fuel cell (mSMFC) during the degradation of pollutants in urban river sediment

    Felix Tetteh Kabutey, Jing Ding, Qingliang Zhao, Philip Antwi, Frank Koblah Quashie. Environmental Science and Pollution Research, 27 (28), 2020. doi: 10.1007/s11356-020-09812-y
  4. A Dc-Dc Boost Converter for Sediment Microbial Fuel Cell Energy Harvesting

    Jeetendra Prasad, Ramesh Kumar Tripathi. 2018 2nd IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2018. doi: 10.1109/ICPEICES.2018.8897432
  5. Effect of sediment microbial fuel cell stacks on 9 V/12 V DC power supply

    Prasad J.. International Journal of Hydrogen Energy, 2020. doi: 10.1016/j.ijhydene.2020.07.187
  6. Membraneless Plant Microbial Fuel Cell using Water Hyacinth (Eichhornia crassipes) for Green Energy Generation and Biomass Production

    Ika Dyah Widharyanti, Muhammad Andiri Hendrawan, Marcelinus Christwardana. International Journal of Renewable Energy Development, 10 (1), 2021. doi: 10.14710/ijred.2021.32403
  7. Optimization of electricity generation from marine sediment of Kendari Bay using stacked sediment microbial fuel cell

    R Sudarman, A Zaeni, I Usman, Alwahab, I Hidayatulloh. Journal of Physics: Conference Series, 1450 (1), 2020. doi: 10.1088/1742-6596/1450/1/012111
  8. Optimization of microbial fuel cell operation using Danube River sediment

    Kristina Joksimović, Aleksandra Žerađanin, Danijela Randjelović, Jelena Avdalović, Srdjan Miletić, Gordana Gojgić-Cvijović, Vladimir P. Beškoski. Journal of Power Sources, 476 , 2020. doi: 10.1016/j.jpowsour.2020.228739
  9. Scale Up of a Marine Sediment Microbial Fuel Cells Stack with a Floating Aerated Cathode Using a Circuit Storage Energy from Ultra-Low Power

    Nancy González-Gamboa, Raúl Tapia-Tussell, Sathish Kumar Kamaraj, David Valdés-Lozano, Jorge Domínguez-Maldonado, Liliana Alzate-Gaviria. Waste and Biomass Valorization, 12 (7), 2021. doi: 10.1007/s12649-020-01289-7