skip to main content

Study and Optimization of a Hybrid Power Generation System to Power Kalakala, a Remote Locality in Northern Côte d'Ivoire

1Laboratoire de Mécanique et Sciences des Matériaux, Institut National Polytechnique Félix Houphouët Boigny, B.P. 581, Yamoussoukro, Côte d'Ivoire

2Laboratoire des Sciences de la Matière, de l’Environnement et de l’Energie Solaire, UFR SSMT, Université Félix Houphouët Boigny, 22 B.P. 582 Abidjan 22, Côte d’Ivoire, Côte d'Ivoire

3Laboratoire des Procédés Industriels, de Synthèse, de l'Environnement et des Energies Nouvelles, Institut National Polytechnique Félix Houphouët Boigny, B.P. 581, Yamoussoukro, Côte d'Ivoire

Received: 21 May 2021; Revised: 5 Oct 2021; Accepted: 29 Oct 2021; Available online: 12 Nov 2021; Published: 1 Feb 2022.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

This work presents the results of a study to optimize the production of electricity, by hybrid system Photovoltaic – Diesel – Batteries, to power the village of Kalakala in the north of Côte d'Ivoire. The study site is an isolated rural community, powered by a diesel generator. It is located in northern Côte d'Ivoire. HOMER software has been used for system simulation and optimization. The result of this study is then compared to those of PV - Batteries and diesel alone systems. From the results of the simulations, it appears that the optimal combination of the hybrid system includes a diesel generator of 50 kW, a photovoltaic field of 46 kW, 10 batteries of 48V and a converter of 100 kW. With a photovoltaic penetration rate of 52.7%, this system, compared to the photovoltaic - batteries system, reduces the photovoltaic field by 56%, the number of batteries by 61.5% and increases battery life by 42.84%. Compared to diesel alone, it reduces fuel consumption and the quantity of CO2 by 60% and improves diesel efficiency by 17%. The cost of generating electricity for the hybrid system is €0.373/kWh compared to €0.466 and €0.608/kWh respectively, for the PV-Batteries and diesel alone systems. The hybrid system with the best technical, economic and environmental performance could be a good alternative for generating electricity in remote communities.

Fulltext View|Download
Keywords: Hybrid systems; Photovoltaic; Diesel generator; Batteries, HOMER software

Article Metrics:

  1. Adaramola, M.S., Agelin-Chaab, M., & Paul, S.S. (2014) Analysis of hybrid energy systems for application in southern Ghana. Energy Convers. Manag., 88, 284-295; doi: 10.1016/j.enconman.2014.08.029
  2. Albadia ,M.H., Al Abria , R.S., Masouda, M.I., Al Saidib , K. H., Al Busaidic , A. S., Al Lawatid , A., Al Ajmid , K., & Al Farsie, I. (2014) Design of a 50 kW solar PV rooftop system. Int. J. Smart Grid Clean Energy, 3(4), 401-409; doi: 10.12720/sgce.3.4.401-409
  3. Anayochukwu, A.V. (2013) Simulation of Photovoltaic/Diesel Hybrid Power Generation System with Energy Storage and Supervisory Control. Int. J. Renew. Energy Res., 3(3), 605-614
  4. Ani, V.A. (2016) Design of a Reliable Hybrid (PV/Diesel) Power System with Energy Storage in Batteries for Remote Residential Home. J. Energy, 2016, Article ID 6278138; doi: 10.1155/2016/6278138
  5. Arnaoutakis, N., Kanellos, F. & Papaefthimiou, S. (2018) Combined operation, modeling and life cycle assessment of a generic hybrid power system installed in Crete. Energy Syst., 9(2), 343-359; doi: 10.1007/s12667-017-0241-0
  6. Ashari, M., &Nayar, C.V. (1999) An optimum dispatch strategy using set point for a phptovoltaïc (PV)-Diesel-Battery hybrid power system. Solar Energy. 66(1),1-9
  7. Ashari, M., Nayar, C.V., & Keerthipala, W.W.L. (2001) Optimum operation strategy and economic analysis of a photovoltaic-diesel-battery-mains hybrid uninterruptible power supply. Renew. Energy, 22(1-3), 247-254; doi: 10.1016/S0960-1481(00)00013-6
  8. Bélanger-Gravel, J. (2011) Analyse technico-écocnomique d’un système hybride éolien-photvoltaïque en comparaison avec les systèmes photovoltaïque et éolien seuls. Université de Montréal, Mémoire de maitrise
  9. Belhamel, M., Moussa, S., & Kaabeche, A. (2002) Production d’Electricité au Moyen d’un Système Hybride (Eolien- Photovoltaïque -Diesel). Revue Energies Renouvelables: Zones Arides, 49-54
  10. Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., &Ahn, S.-H. (2015) Optimization of hybrid renewable energy power systems: A review. Int. J. Precis. Eng. Manuf.-Green Technol., 2(1), 99-112; doi: 10.1007/s40684-015-0013-z
  11. Chowdhury, N., Hossain, C.A., Longo, M. &Yaïci, W. (2020) Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh. Sustainability, 12, 1568; doi: 10.3390/su12041568
  12. Chowdhury, S.A., Aziz, S., Groh, S., Kirchhoff, H., & Leal Filho, W. (2015) Off-grid rural area electrification through solar-diesel hybrid mini grids in Bangladesh: resource-efficient design principles in practice. J. Clean. Prod., 95, 194-202 ; doi: 10.1016/j.jclepro.2015.02.062
  13. Contreras, Z. (2006) Modèle d’électrification rurale pour localités de moins de 500 habitants au Sénégal. Dtsch. Ges. Für Tech. Zusammenarbeit.
  14. Daud, A.-K., & Ismail, M.S. (2012) Design of isolated hybrid systems minimizing costs and pollutant emissions. Renew. Energy, 44, 215-224; doi: 10.1016/j.renene.2012.01.011
  15. De Campos, E.F., Pereira, E.B., Oel, P.V., Martins, F.R., Gonçalves, A.R., & Costa, R.S. (2021) Hybrid power generation for increasing water and energy securities during drought: Exploring local and regional effects in a semi-arid basin. Journal of Environmental Management, 294, Article 112989; doi: 10.1016/j.jenvman.2021.112989
  16. Fan, G., Li, M., Chen, X., Dong, X., & Jermsittiparsert, K. (2021) Analysis of a multi-objective hybrid system to generate power in different environmental conditions based on improved the Barnacles Mating Optimizer Algorithm. Energy Reports, 7, 2950-2961; doi: 10.1016/j.egyr.2021.05.023
  17. Fan, X., Sun, H., Yuan, Z., Li, Z., Shi, R., & Ghadimi, N. (2020) High Voltage Gain DC/DC Converter Using Coupled Inductor and VM Techniques. IEEE Access, 8, 131975-131987; doi: 10.1109/ACCESS.2020.3002902
  18. Ghenai, C., Bettayeb, M., Brdjanin, B., & Hamid, A.K. (2019) Hybrid solar PV/PEM fuel Cell/Diesel Generator power system for cruise ship: A case study in Stockholm, Sweden. Case Studies in Thermal Engineering, 14, Article 100497; doi: 10.1016/j.csite.2019.100497
  19. Ghenai, C., Rasheed, M.A., Alshamsi, M.J., Alkamali, M.A., Ahmad, F.F., & Inayat, A. (2020) Design of Hybrid Solar Photovoltaics/Shrouded Wind Turbine Power System for Thermal Pyrolysis of Plastic Waste. Case Studies in Thermal Engineering, 22, Article 100773; doi: 10.1016/j.csite.2020.100773
  20. Halim, A., Fudholi, A., Sopian, K., Ruslan, M.H., & Phillips, S.J. (2018) Feasibility Study on Hybrid Solar Photovoltaic with Diesel Generator and Battery Storage Design and Sizing Using Homer Pro®. J. Kejuruter., SI1(3), 69-76; doi: 10.17576/jkukm-2018-si1(3)-10
  21. IEA (International Energy Agency) (2020) Access to electricity – SDG7: Data and Projections ... - IEA », SDG7: Data and Projections Access to affordable, reliable, sustainable and modern energy for all.
  22. Ismail, M.S., Moghavvemi, M., & Mahlia, T.M.I. (2013) Techno-economic analysis of an optimized photovoltaic and diesel generator hybrid power system for remote houses in a tropical climate. Energy Convers. Manag., 69, 163-173; doi: 10.1016/j.enconman.2013.02.005
  23. Kanti De, R., &Ganguly, A. (2021) Modeling and analysis of a solar thermal-photovoltaic-hydrogen-based hybrid power system for running a standalone cold storage. Journal of Cleaner Production, 293, Article 126202;
  24. Koucoï, G.A. (2017) Gestion d’énergie dans les systhèmes hybrides PV/Diesel pour zones isolées et rurales : optimisation et experimentation. Science et Technologie de l’eau de l’énergie et de l’environnement, 2iE et INES
  25. Lambert, T., Gilman, P., & Lilienthal, P. (2006) Micropower System Modeling with Homer », in Integration of Alternative Sources of Energy. F. A. Farret et M. G. Simões, Éd. Hoboken, NJ, USA: John Wiley & Sons, p. 379-418
  26. Lilienthal, P., Lambert, T., & Gilman, P. (2004) Computer Modeling of Renewable Power Systems. Encyclopedia of Energy, 633-647
  27. Maleki, A., & Askarzadeh, A. (2014) Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan, Iran. Sustain. Energy Technol. Assessments. 7, 147–153;
  28. Maleki, A., & Rosen, M.A. (2017) Design of a cost-effective on-grid hybrid wind–hydrogen based CHP system using a modified heuristic approach. Int. J. Hydrogen Energy, 42 (25), 15973-15989; doi: 10.1016/j.ijhydene.2017.01.169
  29. Nacer, T., Hamidat, A., Nadjemi, O., & Bey, M. (2016) Feasibility study of grid connected photovoltaic system in family farms for electricity generation in rural areas. Renew. Energy, 96, 305–318; doi: 10.1016/j.renene.2016.04.093
  30. Nfah, E.M., Ngundam, J.M., &Tchinda, R. (2007) Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renew. Energy, 32(5), 832-844 ; doi: 10.1016/j.renene.2006.03.010
  31. Nguewo, D. (2012) Experimentation et optimisation d’un protoype de centrale hybride solaire PV/Diesel sans batteries de stockage : validation du concept “Flexy Energie”. Sciences pour l’Ingénieur - Sciences et Techniques de l’Eau, de l’Energie et l’Environnement, Université de Perpignan - 2iE
  32. Oladigbolu, J.O., Ramli, M.A.M., Al-turki, Y.A. (2019) Technoeconomic and sensitivity analyses for an optimal hybrid power system which is adaptable and effective for rural electrification: a case study of Nigeria. Sustainability, 11(18), article 4959; doi: 10.3390/su11184959
  33. Oladigbolu, J.O., Yusuf A. Al-Turki, Y.A., & Olatomiwa, L. (2021) Comparative study and sensitivity analysis of a standalone hybrid energy system for electrification of rural healthcare facility in Nigeria. Alexandria Engineering Journal, 60, 5547–5565; doi: 10.1016/j.aej.2021.04.042
  34. Pasetti, M., Rinaldi, S., & Manerba, D. (2018) A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers. Applied Sciences, 8(3), Article 432.
  35. Peerapong, P., & Limmeechokchai, B. (2017) Optimal electricity development by increasing solar resources in diesel-based micro grid of island society in Thailand. Energy Rep., 3, 1-13; doi: 10.1016/j.egyr.2016.11.001
  36. Pueyo, A., Bawakyillenuo, S., & Osiolo, H. (2016) Cost and Returns of Renewable Energy in Sub-Saharan Africa: A Comparison of Kenya and Ghana. IDS
  37. Rashidi, H., Niazi, S., & Khorshidi, J. (2012) Optimal Sizing Method of Solar-Hydrogen Hybrid Energy System for Stand-alone Application Using Fuzzy Based Particle Swarm Optimization Algorithm. Australian Journal of Basic and Applied Sciences, 6(10): 249-256
  38. Salas,V. , Suponthana, W., & Salas, R.A. (2015) Overview of the off-grid photovoltaic diesel batteries systems with AC loads. Appl. Energy, 157, 195-216; nov. 2015;
  39. Sen, R., & Bhattacharyya, S.C. (2014) Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renew. Energy, 62, 388-398; doi: 10.1016/j.renene.2013.07.028
  40. Suresh, V.M.M., & Kiranmayi, R. (2020) Modelling and optimization of an off-grid hybrid renewable energy system for electrification in a rural area. Energy Rep., 6, 594-604 ; doi: 10.1016/j.egyr.2020.01.013
  41. Thibaud, S. (2014) Modélisation et optimisation technico-économique des systhèmes photovoltaïques hybrides. CYTHELIA
  42. Vu, T. (2011) Répartition des moyens complémentaires de production et de stockage dans les réseaux faiblement interconnectés ou isolés, Sciences de l’ingénieur, Université de Grenoble
  43. Wang, Z., Zhang, Z., & Rezazadeh, A. (2021) Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell. Energy Reports, 7, 2594–2604;

Last update:

No citation recorded.

Last update:

No citation recorded.