skip to main content

Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

Department of Environmental science; Faculty of natural and computational sciences; Kotebe University College, Addis Ababa, Ethiopia

Published: 15 Oct 2015.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

Fulltext View|Download
Keywords: biogas; digestion; factor; process; substrate

Article Metrics:

  1. Almukhtar R.S., Asawer A., Alwasiti A.A., Mohammed T., Naser M.T. (2012) Enhancement of Biogas production and organic reduction of sludge by different pre-treatment processes. Iraqi Journal of Chemical and Petroleum Engineering, 13(1): 19- 31
  2. Anand V., Chanakya H.N., Rajan M.G. (1991) Solid phase fermentation of leaf biomass to biogas. Resources Conservation and Recycling 6:23-33
  3. Anonymous (1987) Fixed Dome Biogas Plants. A Design, Construction and Operation Manual, TERI, New Delhi, pp 3
  4. Anonymous (2011) Domestic Biogas Newsletter. SNV. Issue 4, http://www.snvworld.org Accessed on 24 February 2013
  5. Badger C.M., Bogue M.J., Stewart D.J. (1979) Biogas production from crops and organic Wastes, New Zealand Journal of Science 22: 11-20
  6. Bilihat L. (2007) Contribution and potential of food left over from campus students’ cafeteria in biogas energy production, a Master Thesis, Addis Ababa University, pp 34, 66
  7. Botkin D., Keller E. (1995) Environmental science. Earth as a living planet, John Wiley and Sons, New York, pp 345-347
  8. Braun R., Wellinger A. (2002) Potential of co-digestion. IEA Bio-energy, Task 37
  9. Buswell A.M, Sollo F.W. (1948) The mechanism of Methane Fermentation. American Chemical Society 70: 1778-1780
  10. Chipman R., Dzioubinski O. (1999) Trends in Consumption and Production. Household Energy Consumption, DESA discussion paper number 6, pp 3
  11. Chynoweth D.P., Owens J.M., Legrand R. (2001) Renewable methane from anaerobic digestion of biomass. Renewable Energy 22: 1-8
  12. Cunningham M.A., Cunningham W.P., Saigo B.W. (2003) Environmental science. A global concern, 7th edn, McGraw-Hill higher education, USA, pp515-517
  13. Dahlman J., Forst C. (2001) Technologies demonstrated at echo. Floating drum biogas digester; echo, 17391 Durance Rd, North Ft. Myers FL 33917, USA
  14. Elias J. (2010) Study on Renewable Biogas Energy Production from Cladodes of Opuntia ficus-indica, Msc thesis, Addis Ababa University, pp 26-28, 34
  15. Ethiopia's Energy Sector (EES) (2010) Italian development cooperation. http://www.itacaddis.org/italy/index.cfm?fuseaction=basic Accessed on 02 November 2014
  16. European Energy Manager Biogas Preparation Material (EEMBPM) (2006), pp2-5
  17. Fachagentur N. (2010) Responding to the world’s growing demand for affordable energy and a Cleaner environment Sustainability for Anaerobic Digestion. http://www.bioenergie-portal.info Accessed on 02 May 2015
  18. Fan L.T, Gharpuray M.M, Lee Y.H. (1981) Evaluation of pretreatments for enzymatic Conversion of agricultural residues. Biotechnology and Bio-energy 11: 29–45
  19. Gannon B. (2005) Biogas Energy Systems. Key Elements of Biogas Energy Systems, Anaerobic digesters. Bio-cycle Conference paper, Germany, pp 3
  20. Getachew E., Sonder K., Heegde F.t. (2006) Report on the feasibility study of a national program for domestic biogas in Ethiopia. SNV – Ethiopia, pp 52
  21. Green D., Nagata E., Slotnick J. (2009) World energy assessment. Energy and the Challenge of Sustainability: energy, the environment and health chapter 3, pp 63, 65
  22. Gurung J.B. (1997) Review of Literature on effects of slurry use on crop production. The biogas Support program final report. Kathmandu, Nepal pp 32, 36
  23. Hills DJ. (1979) Effect of C: N ratio on anaerobic digestion of dairy manure. Agricultural Wastes 1: 247-320
  24. Jemmett R. (2006) Methane-biogas production guide; version 1.0, UK, pp3-4
  25. Kaparaju P., Luostarinen S., Kalmari E., Kalmari J., Rintala J. (2001) Co-digestion of Energy crops and industrial confectionery by-products with cow manure. Batch scale and Farm-scale Evaluation in Anaerobic Digestion. Anaerobic Conversion for Sustainability. 9th World Congress, Antwerpen – Belgium, September 2-6
  26. Karaalp D., Arslan K., Azbar N. (2014) Enhancement of Biogas Production from Laying Hen Manure via Sonolysis as Pretreatment. J Bioprocess Biotech 4 (6): 179 doi: 10.4172/2155-9821.1000179
  27. Karen A. (1994) Environmental Science, 2nd edn., pp208
  28. Karki, Amrit B.And Krishana M., Guatam (1995) Effect of slurry from anaerobic digestion of organic wastes on crops and vegetables and its residua. Effect on soil. Kathmandu
  29. Liqian W., Mattsson M., Rundstedt J., Karlsson N. (2011) Different Pretreatments to Enhance Biogas Production -A comparison of thermal, chemical and ultrasonic methods. Master Thesis, Halmstad University
  30. Marchaim U. (1992) Biogas processes for sustainable development. Biomass uses following anaerobic digestion. Bulletin FAO Agricultural Services, Rome, 95: 165-193
  31. Marshal A. (2010) Stages of anaerobic Digestion, November. http://www.enwikipedia.org/wiki/file Accessed on 02 November 2014
  32. Mckinney M.L, Schoch R.M. (2003) Environmental Science. Systems and Solutions, Jones and Bartlett: Boston, Massachusetts, London and Singapore, pp 227-232
  33. Nallathambi G.V., Lakshmanaperumalsamy P. (1990) Biogas production potential of parthenium, Biological Wastes 33:311-314
  34. NRCS (2005) Conservation Practice Standard. Anaerobic digester in controlled temperature. Number code 366. IA, pp 4-6
  35. Palmowski L. and Muller J. (1999) Influence of the size reduction of organic waste on their anaerobic digestion. In: Mata-Alvarez, J., Cecchi, F. & Tilche, A. (eds). Proc. 2nd International Symposium on Anaerobic Digestion of Solid Waste: 137–144. IWA Publishing, London
  36. Prasad R.D. (2012) Empirical Study on Factors Affecting Biogas Production. International Scholarly Research Network. Volume 2012, 1-7. ID 136959, doi: 10.5402/2012/136959
  37. Quinones T.S., Matthias Plochl M., Budde J., Heiermann M. (2010) Results of batch anaerobic digestion test: effect of enzyme addition. Pp 1-19
  38. Rahmat, B., Priyadi, R., Kuswarini, P. (2014) Effectiveness Of Anaerobic Digestion On Reducing Municipal Waste, International Journal of Scientific & Technology Research, 3 (3): 98-101
  39. Rai G.D. (2004) Non-conventional energy resources, 2nd edn., Khpu Khanna, India. Pp331-337,369
  40. Rajasekaran P., Swaminthan K., Jayapragasm M. (1989) Biogas production potential of Euphorbia tirucally along with cattle manure. Biological Wastes, 30: 75-77
  41. Reddy N., Amulya K., Wendy A., Kornelis B., David B., Brenda B., Anton E., Jamuna R., Quentin W., Anita K., Mehdi Z. (2004) World Energy Assessment. Energy and Social issues, part I, Chapter 2, pp 40
  42. Rogner H., Fritz B., Maritess C., Andre F., Marc G., David H., Vladimir K., Serguei K., Thierry L., Roberto M., Notstaller R. , Peter O., Martin T. (2004) World energy Assessment. Energy and the Challenge of Sustainability. Energy resources, Chapter 5, pp 136
  43. Sagagi B.S., Garba B., Usman N.S. (2009) Studies on biogas production from fruits and Vegetable waste. Bayero Journal of Pure and Applied Sciences 2(1): 115 – 118
  44. Sau S.K., Manna T.K., Apurba G.A., Nandi P.K. (2014) Enhancement of Biogas Production from Predigested Substrate by Human Urine under Different Thermal Condition. International Journal of Engineering and Innovative Technology (IJEIT) 4 (3):71-77
  45. Saxon J. (1998) Troubled Times. Renewable Energy 2: 519-520
  46. Shivappa S.K., Naharaju H.C., Bhagyaraj D.J., Patil R.B. (1980) Studies on the use of agricultural and animal wastes for biogas production proceedings. RRAI symposium, Punjab Agricultural University, Ludhiana, pp 333-340
  47. Sidhu K.S. (2006) Non-conventional Energy Resources, PEC campus, Chandigarh, pp-6-7
  48. Steffen R., Szolar O., Braun R. (2000) Feedstock for anaerobic digestion. Anaerobic Digestion, making energy and solving modern waste problem, AD-Nett report
  49. Tesfaye N. (2007) Study on anaerobic digestion of chat wastes. MSc Thesis, AddisAbaba University pp-28
  50. UNDP (2004) Over view of World Energy Assessment. Policies and Actions to Promote Energy for Sustainable Development, part VI, pp-68
  51. Velsen V., Lettinga G., and Ottelander D. (1979) Anaerobic digestion of Piggery Waste. Influence of temperature. Netherlands Journal of Agricultural Sciences 27:255-267
  52. Vindis P., Mursec B., Rozman C., Janzekovic M., Cus F. (2009) Mini digester and biogas Production from plant biomass. Journal of Achievements in materials and Manufacturing Engineering 35:191-196
  53. Weisman W. (2009) Biogas wrongly ignored as an alternative source of energy: http://special.registerguard.com/csp/cms/sites/web/opinion/22324802-47/story.csp. Accessed on 02 December 2014
  54. Wilkie AC. (2008) Bioenergy: Biomethane from biomass, Biowaste and Biofuel, J.Well et al. Washington DC, pp195-199
  55. Yitayal A., Mekibib D., Araya A. (2011) Study on biogas production potential of Justicia shimperiana. MSc Thesis, AddisAbaba University pp-28

Last update:

  1. Solid State Anaerobic Digestion for Biogas Production from Rice Husk

    Hashfi Hawali Abdul Matin, Syafrudin Syafrudin, Suherman Suherman, B. Warsito, Sudarno, T. Triadi Putranto. E3S Web of Conferences, 202 , 2020. doi: 10.1051/e3sconf/202020208005
  2. Augmented Reality-Based Visualization and Education for Biogas Plant Adoption in Rural Communities

    Akash, Andhe Dharani, Preethi N. Patil, Chandrani Chakravorty, Yathish L. 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), 2023. doi: 10.1109/GCAT59970.2023.10353321
  3. Production Technologies for Gaseous and Solid Biofuels

    Victor M. Mbachu, Modestus O. Okwu, Celine C. Chiabuotu, Lagouge K. Tartibu. 2022. doi: 10.1002/9781119785842.ch4
  4. Waste to energy: power generation potential of putrescible wastes by anaerobic digestion process at Hyderabad, Pakistan

    Korai M. Safar, Mahar R. Bux, Uqaili M. Aslam. Journal of Material Cycles and Waste Management, 20 (2), 2018. doi: 10.1007/s10163-017-0689-y
  5. Substitute Natural Gas from Waste

    Olivier Dubois, Tiziana Pirelli, Alessandro Peressotti. 2019. doi: 10.1016/B978-0-12-815554-7.00013-1

Last update: 2024-09-13 16:13:51

  1. A social cost-benefit analysis of biogas technologies using rice straw and water hyacinths as feedstock

    Bentzen J.. International Energy Journal, 18 (4), 2018.
  2. Biomass anaerobic digestion and gasification in non-OECD countries-an overview

    Dubois O.. Substitute Natural Gas from Waste: Technical Assessment and Industrial Applications of Biochemical and Thermochemical Processes, 2019. doi: 10.1016/B978-0-12-815554-7.00013-1
  3. Waste to energy: power generation potential of putrescible wastes by anaerobic digestion process at Hyderabad, Pakistan

    Korai M. Safar, Mahar R. Bux, Uqaili M. Aslam. Journal of Material Cycles and Waste Management, 20 (2), 2018. doi: 10.1007/s10163-017-0689-y