skip to main content

Batch and Fed-Batch Fermentation System on Ethanol Production from Whey using Kluyveromyces marxianus

Center of Biomass and Renewable Energy (CBIORE), Diponegoro University,, Indonesia

Published: 30 Oct 2013.
Editor(s):

Citation Format:
Abstract

Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to  find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey) using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was  to compare the operation modes (batch and fed-batch) of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S) of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S) of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently  increasing their activity and ethanol productivity.

 

Fulltext View|Download
Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey

Article Metrics:

  1. Ariyanti, D. & Hadiyanto (2013) Ethanol production from whey by Kluyveromyces marxianus in batch fermentation system: kinetics parameters estimation. Bulletin of Chemical Engineering and Catalysis, 7(3), 179-184
  2. Becerra, M. & Siso, M.I.G. (2006) Yeast β-Galaktosidase in solid-state fermentations. Journal of Enzyme and Microbial Technology, 19, 39-44
  3. Cheng, N. G., Hasan, M., Kumoro, A. C., Ling, C. F. & Tham, M. (2009) Production of ethanol by fed-batch fermentation. Journal Science and Technology Pertanika, 17(2), 399-408
  4. Foda, M. I., Joun, H. & Li, Y. (2010) Study the Suitability of cheese whey for biobutanol production by ClostridiaI. Journal of American Science, 39-46
  5. Goshima, T., Tsuji, M., Inoue, H., Yano, S., Hoshino, T. & Matsushika, A. 2013. Bioethanol production from lignocellulosic biomass by a novel Kluyveromyces marxianus strain. Bioscience, Biotechnology and Biochemical, 77(7), 1505-1510
  6. Guimarães, P.M.R., Teixeira, J.A. & Domingues, L. 2010, Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorization of cheese whey. Biotechnology Advances, 28, 375–384
  7. Kourkoutas, Y., Dimitropoulou, S., Kanellaki, M., Marchant, R., Nigam, P., Banat, I. M. & Koutinas, A.A. (2002) High Temperature alcoholic fermentation of whey using Kluyveromyces marxianus IMB3 yeast immobilized on delignified cellulosic material. Journal of Bioresources Technology, 82, 177-181
  8. Lukondeh, T., Ashbolt, N.J. & Rogers, P.L. (2005) Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on a lactose-based medium. Journal of Industrial Microbiology and Biotechnology, 32(7), 284-288
  9. Rech R. & Ayub, M.A.Z. (2006) Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey. Brazilian Journal of Chemical Engineering, 23 (04), 435 - 442
  10. Rech, R. & Ayub, M.A.Z. (2007) Simplified feeding strategies for fed-batch cultivation of Kluyveromyces marxianus in cheese whey. Journal of Elsevier, 42 (5), 873–877
  11. Saarela, U., Leiviska, K. & Juuso, E. (2003) Modelling of a fed-batch fermentation process. Report A No. 21, June 2003. Control Engineering Laboratory, University of Oulu Finland
  12. Shahani, K.M. & Friend, B.A. (1980) Fuel Alcohol Production from whey and grain mixtures. Department of Food Science and Technology University of Nebraska Lincoln. American Chemical Society Division
  13. Toyoda, T. & Kazuhisa O. (2008). Production of ethanol from lactose by Kluyveromyces lactis NBRC 1903. Thammasat International Journal of Science and Technology, 13, 30-35
  14. Zafar, S. & Owais, M. (2005) Ethanol production from crude whey by Kluyveromyces marxianus. Biochemisal Engineering Journal, 27, 295-298

Last update:

  1. Trends and perspectives of liquid biofuel - process and industrial viability

    K. Sandesh, P. Ujwal. Energy Conversion and Management: X, 2021. doi: 10.1016/j.ecmx.2020.100075
  2. Trends and perspectives of liquid biofuel – Process and industrial viability

    K. Sandesh, P. Ujwal. Energy Conversion and Management: X, 10 , 2021. doi: 10.1016/j.ecmx.2020.100075
  3. Food Waste to Green Fuel: Trend & Development

    Navodita Maurice. Clean Energy Production Technologies, 2022. doi: 10.1007/978-981-19-0813-2_4
  4. Bioethanol [Working Title]

    Mohammad Moneruzzaman Khandaker, Umar Aliyu Abdullahi, Mahmoud Dogara Abdulrahman, Noor Afiza Badaluddin, Khamsah Suryati Mohd. 2020. doi: 10.5772/intechopen.94358
  5. Fed-batch fermentation of sugarcane biomass applied for biomolecules production in fluidized bed reactor

    F.A.F. Antunes, C.A. Prado, M.J.A. Fernandez, R.F. Grigório, A.S. Silva, A.E. Mera, M.J. Castro-Alonso, T.M. Rocha, S. Sanchez-Muñoz, J.C. Santos, S.S. da Silva. Bioresource Technology Reports, 26 , 2024. doi: 10.1016/j.biteb.2024.101851
  6. Yeasts in sustainable bioethanol production: A review

    Siti Hajar Mohd Azhar, Rahmath Abdulla, Siti Azmah Jambo, Hartinie Marbawi, Jualang Azlan Gansau, Ainol Azifa Mohd Faik, Kenneth Francis Rodrigues. Biochemistry and Biophysics Reports, 10 , 2017. doi: 10.1016/j.bbrep.2017.03.003
  7. Adsorption method using zeolite to produce fuel grade bioethanol

    Hargono Hargono, Noer Abyor Handayani, Sheila Dwifa Andani, Ersa Wardani, Ulma Aqari Fisama, Kevin Setiadi Seng. International Journal of Renewable Energy Development, 12 (4), 2023. doi: 10.14710/ijred.2023.50936
  8. Biomass, Biorefineries and Bioeconomy

    Ifeanyi Michael Smarte Anekwe, Edward Kwaku Armah, Emmanuel Kweinor Tetteh. 2022. doi: 10.5772/intechopen.102692
  9. Microbial Biotechnology for Bioenergy

    Srinivasan Kameswaran, N.O. Gopal, A. Sivashankar Reddy, Ch. Manjula, Manjunatha Bangeppagari, Bellamkonda Ramesh. 2024. doi: 10.1016/B978-0-443-14112-6.00003-1
  10. Genetics and metabolic engineering of yeast strains for efficient ethanol production

    Gboyega E. Adebami, Arindam Kuila, Obinna M. Ajunwa, Samuel A. Fasiku, Michael D. Asemoloye. Journal of Food Process Engineering, 45 (7), 2022. doi: 10.1111/jfpe.13798
  11. Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

    Harun Ar Rashid, Hyun Yi Jung, Joong Kyun Kim. Fisheries and Aquatic Sciences, 21 (1), 2018. doi: 10.1186/s41240-018-0109-9
  12. Microbes and Microbial Biotechnology for Green Remediation

    M. Subhosh Chandra, M. Srinivasulu, P. Suresh Yadav, B. Ramesh, S. Kameswaran, A. Madhavi. 2022. doi: 10.1016/B978-0-323-90452-0.00045-1
  13. Value-Addition in Agri-food Industry Waste Through Enzyme Technology

    Manju. 2023. doi: 10.1016/B978-0-323-89928-4.00013-4
  14. Bioethanol Technologies

    Mohammad Moneruzzaman Khandaker, Umar Aliyu Abdullahi, Mahmoud Dogara Abdulrahman, Noor Afiza Badaluddin, Khamsah Suryati Mohd. 2021. doi: 10.5772/intechopen.94358
  15. Advances in Yeast Biotechnology for Biofuels and Sustainability

    Prabir Kumar Das, Ansuman Sahoo, Venkata Dasu Veeranki. 2023. doi: 10.1016/B978-0-323-95449-5.00013-8
  16. Solid‐Gaseous Biofuels Production

    Swati Ray, Avik Mukherjee, Uma Ghosh. 2024. doi: 10.1002/9781394204816.ch10
  17. Comparative Review on the Production and Purification of Bioethanol from Biomass: A Focus on Corn

    Jean Claude Assaf, Zeinab Mortada, Sid-Ahmed Rezzoug, Zoulikha Maache-Rezzoug, Espérance Debs, Nicolas Louka. Processes, 12 (5), 2024. doi: 10.3390/pr12051001
  18. Urea addition during hydrolysis for increased ethanol yield from white sweet potato: a promising strategy

    Muhamad Maulana Azimatun Nur, Chisya Ayu Puspitaweni, Maya Puspitasari, Faizah Hadi, Sri Wahyu Murni, Wibiana Wulan Nandari, Tutik Muji Setyoningrum. Biofuels, 14 (10), 2023. doi: 10.1080/17597269.2023.2207400
  19. Valorisation of Agro-industrial Residues – Volume II: Non-Biological Approaches

    Asha P. Antony, Swapna Kunhiraman, Sabu Abdulhameed. Applied Environmental Science and Engineering for a Sustainable Future, 2020. doi: 10.1007/978-3-030-39208-6_4

Last update: 2025-01-20 10:43:26

  1. Expression and characterization of Trichoderma reesei endoglucanase II in Pichia pastoris under the regulation of the GAP promoter

    Yerah Tjandra K.A.. Indonesian Journal of Biotechnology, 25 (2), 2020. doi: 10.22146/ijbiotech.55604
  2. Trends and perspectives of liquid biofuel – Process and industrial viability

    K. Sandesh, P. Ujwal. Energy Conversion and Management: X, 10 , 2021. doi: 10.1016/j.ecmx.2020.100075
  3. Yeasts in sustainable bioethanol production: A review

    Siti Hajar Mohd Azhar, Rahmath Abdulla, Siti Azmah Jambo, Hartinie Marbawi, Jualang Azlan Gansau, Ainol Azifa Mohd Faik, Kenneth Francis Rodrigues. Biochemistry and Biophysics Reports, 10 , 2017. doi: 10.1016/j.bbrep.2017.03.003
  4. Saccharomyces cerevisiae and its industrial applications

    Parapouli M.. AIMS Microbiology, 6 (1), 2020. doi: 10.3934/microbiol.2020001
  5. Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

    Harun Ar Rashid, Hyun Yi Jung, Joong Kyun Kim. Fisheries and Aquatic Sciences, 21 (1), 2018. doi: 10.1186/s41240-018-0109-9