skip to main content

Investigations on the Influence of Surface Textures on Optical Reflectance of Multi-crystalline Silicone (MC-Si) Crystal Surfaces-Simulations and Experiments

Department of Mechanical Engineering, NSS College of Engineering Palakkad, Kerala 678008, India

Received: 24 May 2021; Revised: 26 Nov 2021; Accepted: 28 Dec 2021; Available online: 10 Jan 2022; Published: 5 May 2022.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
MC-Si is the most widely used material for making solar PV cells. In spite of the considerable research on improving the conversion efficiency of MC-Si solar PV cells still it remains well within the range of 15-20%. Optical reflectance being the major loss of incident solar energy, efforts are being made to reduce the optical reflectance of solar cell surfaces. Among the several methods proposed, creation of well-defined surface topography on the cell surface remains a promising option. Micro/nano level features with various dimensions and distributions have been created on MC-Si crystal surfaces using a femto-second pulsed laser and the influence of surface topography on optical reflectance in the incident light wave length of 350 – 1000 nm have been studied and compared with the simulation results obtained using OPAL2 software. Experimental results indicate that surface textures on the wafer surface lead to the reduction of optical reflectance in the range of 20-35% in comparison with plain surface. Width of micro grooves have less significant effect on the optical reflectance in comparison with pitch between the micro grooves. Best reduction in reflectance is exhibited by the texture having a groove width of 30 mm and a pitch of 100 mm. A post texturing etching operation is found to have detrimental effect on the ability of micro/nano level features in decreasing the optical reflectance in the preferred wavelength of solar spectrum due to the flattening of nano level features created within the micro grooves due to laser texturing.
Fulltext View|Download
Keywords: Laser texturing; Surface texture; Etching Multi crystalline Silicone; Reflectance
Funding: Kerala state council for science technology and environment wide ETP/13/2017/KSCSTE -12/08/2018

Article Metrics:

  1. Binetti, S. Le Donne, A. Rolfi, A. Jäggi, B. Neuenschwander, B. Busto, C. Frigeri, C. Scorticati, D. Longoni, L. & Pellegrino, S. (2016) Picosecond laser texturization of mc-silicon for photovoltaics: A comparison between 1064nm, 532nm and 355nm radiation wavelengths, Applied Surface Science. 371, 196–202
  2. Chuqi Yi, Fa-Jun Ma, Hidenori Mizuno, Kikuo Makita, Takeyoshi Sugaya, Hidetaka Takato, Hamid Mehrvarz, Stephen Bremner, & Anita Ho-Baillie, (2020) Application of polydimethylsiloxane surface texturing on III-V//Si tandem achieving more than 2 % absolute efficiency improvement, Optics Express 28(3), 3895-3904 •
  3. Dang, C. Labie, R. Tous, L. Russell, R. Recaman, M, Deckers, J. Uruena, A, Duerinckx, F. & Poortmans, J. (2014) Investigation of laser ablation induced defects in crystalline silicon solar cells, Energy Procedia, 55. 649–655.
  4. Dobrzański L.A. & Drygała, A. (2007) Laser processing of multicrystalline silicon for texturization of solar cells, Journal of Material Processing Technology, 191(1), 228–231.
  5. Forbes, L. (2012) Texturing, reflectivity, diffuse scattering and light trapping in silicon solar cells, Solar Energy, 86(1),.319–325.
  6. Gao, Y. Wu, B. Zhou, Y. & Tao, S. (2011) A two-step nanosecond laser surface texturing process with smooth surface finish, Applied Surface Science, 257(23), 9960–9967.
  7. Gulomov, J., Aliev, R., Mirzaalimov, A., Mirzaalimov, N., Kakhkhorov, J., Rashidov, B., & Temirov, S. (2021) Studying the Effect of Light Incidence Angle on Photoelectric Parameters of Solar Cells by Simulation. International Journal of Renewable Energy Development, 10(4), 731-736.
  8. Hamdani, D., Prayogi, S., Cahyono, Y., Yudoyono, G., & Darminto, D. (2022). The Effects of Dopant Concentration on the Performances of the a-SiOx:H(p)/a-Si:H(i1)/a-Si:H(i2)/µc-Si:H(n) Heterojunction Solar Cell. International Journal of Renewable Energy Development, 11(1), 173-181.
  9. Hong Z., Bin Ding, & Tianhang Chen, (2016) A High Efficiency Industrial Polysilicon Solar Cell with a Honeycomb-Like Surface Fabricated by Wet Etching Using a Photoresist Mask, Applied Surface Science
  10. Hong, S., Zou, Y., Ma, L. et al. (2021), Surface Texturing Behavior of Nano-Copper Particles under Copper-Assisted Chemical Etching with Various Copper Salts System. Silicon.
  11. Iyengar,V. V. Nayak, B R.& Gupta, M.C.(2010) Optical properties of silicon light trapping structures for photovoltaics, Solar Energy Materials & Solar Cells 94 (12), 2251–2257.
  12. Jung Y, Ko J, Bae S, Kang Y & Lee H S,(2020) Effective Surface Texturing of Diamond-Wire-Sawn Multicrystalline Silicon Wafers Via Crystallization of the Native Surface Amorphous Layer, IEEE Journal of Photovoltaics DOI: 10.1109/JPHOTOV.2020.3035122
  13. Kim J H, You S & Kim C K,(2020) Surface Texturing of Si with Periodically Arrayed Oblique Nanopillars to Achieve Antireflection, Materials 2021, 14(2), 380;
  14. Liu, S. Niu, X. Shan, W. Lu, W. Zheng, J. Li, Y. Duan, H. Quan, W. Han, W. Wronski C. R. & Yang, D. (2014) Improvement of conversion efficiency of multicrystalline silicon solar cells by incorporating reactive ion etching texturing,” Solar Energy Materials & Solar Cells 127. 21–26.
  15. Malcolm A. &Jeffrey C. (2006) Optical and electrical properties of laser texturing for high-efficiency solar cells, Progress in Photovoltaics: Research and Applications, 14:225-235.
  16. Abdul Razak N H, Sopian K, Nowshad Amin & Md. Akhtaruzzaman, (2020) Investigation on the post-treatment after pulsed Nd:YAG laser texturing on silicon solar cells surfaces 11387, Proceedings volume 11387 Energy Harvesting and Storage: Materials, Devices, and Applications,
  17. OPAL 2 Wafer ray tracer algorithm, official website racer.html : (Accessed on 10 May 2021)
  18. Pourakbar Saffar, A., & Deldadeh Barani, B. (2014). Thermal effects investigation on electrical properties of silicon solar cells treated by laser irradiation. International Journal of Renewable Energy Development, 3(3), 184 - 187.
  19. Reddy, M V Julian, C. M. Alain Mauger, & Karim Zhagib, (2020), Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review, Nanomaterials, 10(8), 1606,
  20. Ruby, D. S. Zaidi, S. H. Narayanan, S. Damiani, B. M. & Rohtagi, A. (2008) RIE -texturing of multi-crystalline silicon solar cells, Journal of Achievements in. Materials and Manufacturing Engineering, 31(1) 77–82. (02)00057-0
  21. Sreejith K P, Sharma A K, Kumbhar S, Kottantharayil A, & Basu P K, (2019) An additive-free non-metallic energy efficient industrial texturization process for diamond wire sawn multicrystalline silicon wafers, Solar Energy, 184, 162–172
  22. Srivastava, S. K. Kumar, D. Vandana, M. Sharma, Kumar, R & Singh, P. K (2012) Silver catalyzed nano-texturing of silicon surfaces for solar cell applications, Solar Energy Materials Solar Cells 100, 33–38.
  23. Srivastava, S. K., Singh, P., Yameen, M., Prathap, P., Rauthan, C. M. S & Singh, P. K (2015) Antireflective ultra-fast nanoscale texturing for efficient multi-crystalline silicon solar cells, Solar Energy, 115. 656–666.
  24. Sudeep, U., Tandon, N. & Pandey, R. K. (2014) Performance of Lubricated Rolling/Sliding Concentrated Contacts with Surface Textures: A Review, Transactions of ASME, Journal of Tribology, DOI: 10.1115/1.4029770
  25. Tripathi, A. K., Aruna, M., & Murthy, C. (2017). Performance Evaluation of PV Panel Under Dusty Condition. International Journal of Renewable Energy Development, 6(3), 225-233.
  26. Yoo, J., Cho, J.-S., Ahn, S., Gwak, J., Cho, A., Eo Y.J. Yun J.H, Yoon K. & Yi, J. (2013) Random reactive ion etching texturing techniques for application of multi-crystalline silicon solar cells, Thin Solid Films, 546, 275–278.
  27. Yoo, J. Yu, G. & Yi, J. (2011) Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE), Sol. Energy Mater. Sol. Cells, 95, (1). 2–6.
  28. Zhao, J., Wang, A., & Campbell, P., (1999) A 19.8% efficient honeycomb multi-crystalline silicon solar cell with improved light trapping,” IEEE Transactions on Electron Devices, 46(10), 1978–1983.
  29. Zielke, D., Sylla, T., Neubert, R., Brendel & Schmidt. J., (2012) Direct laser texturing for high-efficiency silicon solar cells, IEEE Journal of Photovoltaics, 2156-3381.
  30. Zhu peining, Wu Yogzhi , Reddy M. V. et al. (2012) TiO2 nanoparticles synthesized by the molten salt method as a dual functional material for dye-sensitized solar cells, RSC Advances, 2, 5123-5126,
  31. Zhu, P. Ramana Reddy, M. V., Wu, Y., Peng, S., Yang, S., Nair, A. S., Loh, K. P., Chowdari, B. V. R., & Ramakrishna, S.,(2012) Mesoporous SnO 2 agglomerates with hierarchical structures as an efficient dual-functional material for dye-sensitized solar cells, Chemical Communications, 48, 10865-10867.

Last update:

  1. A Method for Fast Identification of Orientation Parameters of Multicrystalline Silicon

    S. M. Pesherova, E. A. Osipova, A. G. Chueshova, S. S. Kolesnikov, M. Yu. Ryb’yakov, A. A. Kuznetsov, V. L. Arshinskii. Optoelectronics, Instrumentation and Data Processing, 58 (6), 2022. doi: 10.3103/S8756699022060085
  2. Highly regular laser-induced periodic silicon surface modified by MXene and ALD TiO2 for organic pollutants degradation

    Andrii Lys, Iaroslav Gnilitskyi, Emerson Coy, Mariusz Jancelewicz, Oleksiy Gogotsi, Igor Iatsunskyi. Applied Surface Science, 640 , 2023. doi: 10.1016/j.apsusc.2023.158336

Last update: 2024-05-21 09:33:30

No citation recorded.