skip to main content

Synthesis and Characterization of Hydrochar and Bio-oil from Hydrothermal Carbonization of Sargassum sp. using Choline Chloride (ChCl) Catalyst

1Department of Chemical Engineering, Bandung Institute of Technology, Bandung, Indonesia

2Department of Chemical Engineering, Lampung University, Lampung, Indonesia

3North Japan Research Institute for Sustainable, Hirosaki University, Aomori, Japan

Received: 12 Nov 2021; Revised: 28 Dec 2021; Accepted: 6 Jan 2022; Available online: 20 Jan 2022; Published: 1 May 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
The purpose of this study is to alter the biomass of Sargassum sp. into elective fills and high valuable biomaterials in a hydrothermal process at 200oC for 90 minutes, using ZnCl2 and CaCl2 activating agents, withChClas a catalyst. This method generatedthree primaryoutputs: hydrochar, bio-oil, and gasproducts. ChCl to water ratio varies from 1:3, 1:1, and 3:1. The hydrochar yield improved when the catalyst ratio was increased, but the bio-oil and gas yield declined. The highest hydrochar yields were 76.95, 63.25, and 44.16 percent in ZnCl2, CaCl2, and no activating agent samples, respectively.The porosity analysis observed mesopore structures with the most pore diameters between 3.9-5.2 nm with a surface area between 44.71-55.2. The attribute of interaction between activator and catalyst plays a role in pore formation. The hydrochar products with CaCl2 showed the best thermal stability. From the whole experiment, the optimum hydrochar yield (76.95%), optimum surface area (55.42 m2 g-1), and the increase in carbon content from 21.11 to 37.8% were achieved at the ratio of ChCl to water was three, and the activating agent of ZnCl2. The predominant bio-oil components were hexadecane, hexadecanoic, and 9-octadecenoic acids, with a composition of 51.65, 21.44, and 9.87%, respectively the remaining contained aromatic alkanes and other fatty acids. The findings of this study reported that adding activating agents and catalysts improve hydrochar yield and characteristics of hydrochar and bio-oil products, suggesting the potential of hydrochar as a solid fuel or biomaterial and bio-oil as liquid biofuel
Fulltext View|Download
Keywords: Sargassum sp.; Hydrothermal carbonization; Hydrochar; Bio-oil; Alkane

Article Metrics:

  1. Akbari, M., Oyedun, A.O., Kumar, A., 2019. Comparative energy and techno-economic analyses of two different configurations for hydrothermal carbonization of yard waste. Bioresource Technology Reports, 7, 1002103; doi: 10.1016/j.biteb.2019.100210
  2. Bayu, A., Yoshida, A., Karnjanakom, S., Kusakabe, K., Hao, X., Prakoso, T., Abudula, A., & Guan, G. (2018). Catalytic conversion of biomass derivatives to lactic acid with increased selectivity in an aqueous tin (II) chloride/choline chloride system. Green Chemistry, 40, 4112; doi: 10.1039/C8GC01022F
  3. Carriazo, D., Serrano, M. C., Gutiérrez, M. C., Ferrer,, M .L., & del Monte, F. (2012). Deep-eutectic solvents play multiple roles in the synthesis of polymers and related materials. Chemical Society Review, 41, 4996-5014; doi: 10.1039/C2CS15353J
  4. Clemente, J. S., Beauchemin, S., Thibault, Y., Ted MacKinnon, & Smith, D. (2018). Differentiating Inorganics in Biochars Produced at Commercial Scale Using Principal Component Analysis. ACS Omega, 3, 6931−6944; doi: 10.1021/acsomega.8b00523
  5. Demir, M., Kahveci, Z., Aksoy, B., Palapati, N. K. R., Subramanian, A., Cullinan, H. T., Hani, M., El-Kaderi, H.M., Harris, C. T., & Gupta, R. B. (2015). Graphitic Biocarbon from Metal-Catalyzed Hydrothermal Carbonization of Lignin. Industrial Engineering Chemistry Research, 54(43) 10731-10739; doi: 10.1021/acs.iecr.5b02614
  6. Gao, P., Zhou, Y., Meng, F., Zhang, Y., Liu, Z., & Zhang, W. (2016). Preparation and characterization of hydrochar from waste eucalyptus bark by hydrothermal carbonization. Energy, 97, 238; doi: 10.1016/
  7. Guo, Y., Yeh, T., Song, W., Xu, D., & Wang, S. (2015). A review of bio-oil production from hydrothermal liquefaction of algae. Renewable and Sustainable Energy Review, 48, 776; doi: 10.1016/j.rser.2015.04.049
  8. Hadhoum, L., Balistrou, M., Burnens, G., Loubar, K., & Tazerout M (2016). Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions. Bioresource Technology. 218 9; doi: 10.1016/j.biortech.2016.06.054
  9. Jain, A., Balasubramanian, R., & Srinivasan, M.P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 283, 789–805; doi: 10.1016/j.cej.2015.08.014
  10. Jeong, H. M., Lee, J. W., Shin, W. H., Choi, Y. J., Shin, H. J, Kang, J. K., & Choi, J. W. (2011). Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes. Nano Letter, 11, 2472–2477; doi: 10.1021/nl2009058
  11. Kambey, C. S. B, Campbell, I., Sondak, C. F. A, Nor, A.R.M, Lim, P.E., & Cook, E. J. C. (2020). An analysis of biosecurity frameworks' current status and future for the Indonesian seaweed industry. Journal of Applied Phycology, 32,2147–2160; doi: 10.1007/s10811-019-02020-3
  12. Khan,T.A., Saud, A.S., Jamaric, S. S., Rahim, M. H., Park, J. W., & Kim, H. (2019). Hydrothermal carbonization of lignocellulosic biomass for carbon-rich material preparation: A review. Biomass and Bioenergy, 130, 105384; doi: 10.1016/j.biombioe.2019.105384
  13. Kim, S. S., Ly, H. V., Kim, J., Choi, J. H. & Woo, H. C. (2013). Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. Biomass, Bioresource Technology, 139, 242; doi: 10.1016/j.biortech.2013.03.192
  14. Kumar, A., Saini, K., Bhaskar, T., 2020. Hydochar and biochar: Production, physicochemical properties, and techno-economic analysis. Bioresource Technology, 310, 123442; doi: 10.1016/j.biortech.2020.123442
  15. Liu, Z., Zhang, F. S., & Wu, J. (2010). Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 89 (2) 510-514; doi: 10.1016/j.fuel.2009.08.042
  16. Luo, L., Chen, T., Li, Z., Zhang, Z., Zhao, W., & Fan (2018). Heteroatom self-doped activated biocarbon from fir bark and their excellent performance for carbon dioxide adsorption. Journal of CO2 Utilization, 25, 89; doi: 10.1016/j.jcou.2018.03.014
  17. Li, D., Chen, l., Zhang, X., Ye, N., & Xing, F. (2011). Pyrolytic characteristics and kinetic studies of three kinds of red algae. Biomass and Bioenergy, 35, 1765; doi: 10.1016/j.biombioe.2011.01.011
  18. Li, Y., Hagos, F.M., Chen, R., Qian, H., Mo, C., Di, J., Gai, X., Yang, R., Pan., G., & Shan., S. (2021). Rice husk hydrochars from metal chloride-assisted hydrothermal carbonization as biosorbents of organics from aqueous solution. Bioresource and Bioprocessing, 8, 99; doi: 10.1186/s40643-021-00451-w
  19. Melo, C. A., Junior, F.H.S., Bisinoti, M. C., Moreira, A. B., & Ferreira, O. P. (2017). Transforming Sugarcane Bagasse and Vinasse Wastes into Hydrochar in the Presence of Phosphoric Acid: An Evaluation of Nutrient Contents and Structural Properties. Waste and Biomass Valorization, 8, 1139–1151. doi: 10.1007/s12649-016-9664-4
  20. Mumme, J., Eckervogt, L., Pielert, J., Diakite, M., Rupp, F., & Kern, J. (2011). Hydrothermal carbonization of anaerobically digested maize silage. Bioresource Technology, 102 (19) 9255-926; doi: 10.1016/j.biortech.2011.06.099
  21. Patel, N., Acharya, B., & Basu, P. (2021). Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar. Energies, 14, 1805; doi: 10.3390/en14071805
  22. Prakoso, T., Nurastuti, R., Hendriansyah, R., Rizkiana, J., Suantika, G., & Guan, G. (2018). Hydrothermal Carbonization of Seaweed for Advanced Biochar Production. MATEC Web of Conferences 156, 05012; doi: 10.1051/matecconf/201815605012
  23. Purnomo, A.H., Utomo, B.S.B, & Paul, N.(2020). Institutional arrangement for quality improvement of the Indonesian gracilaria seaweed. AACL Bioflux, 13(5), 2798–2806
  24. Reza, M. T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J. G., & Mumme, J. (2014). Hydrothermal Carbonization of Biomass for Energy and Crop Production. Applied Bioenergy, 1, 11; doi: 10.2478/apbi-2014-0001
  25. Saleh, H. & Sebastian, E. (2020). Seaweed Nation: Indonesia's new growth sector. Australia-Indonesia Centre, 2, 1-8
  26. Satlewal, A., Agrawal, R., Bhagia, S , Sangoro, J. , & Ragauskas, S. J. (2018). Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges, and novel opportunities. Biotechnology Advances, 36, 2032–2050; doi: 10.1016/j.biotechadv.2018.08.009
  27. Schneider, D, Escala, M., Supawittayayothin, K., & Tippayawong, N. (2011). Characterization of biochar from hydrothermal carbonization of bamboo, International Journal of Energy & Environmental Engineering, 2(4), 647
  28. Shen, R., Lu, J., Yao, Z., Zhao, L., & Wu, Y. (2021). The hydrochar activation and bio-crude upgrading from hydrothermal treatment of lignocellulosic biomass, Bioresource Technology, 342, 125914; doi: 10.1016/j.biortech.2021.125914
  29. Smith, A. M. & Ross, A.B. (2016). Production of bio-coal, bio-methane, and fertilizer from seaweed via hydrothermal carbonization. Algal Research, 16, 1–11; doi: 10.1016/j.algal.2016.02.026
  30. Speight, J. G. (2015). Handbook of Petroleum Product Analysis. Hoboken, NJ: Wiley. pp. 158–159
  31. Stemann, J., Erlach, B., & Ziegler, F., (2013). Hydrothermal carbonization of empty palm oil fruit bunches: laboratory trials, plant simulation, carbon avoidance, and economic feasibility. Waste and Biomass Valorization, 4 (3), 441–454; doi: 10.1007/s12649-012-9190-y
  32. Tekin, K., Karagoz, S., & Bektas, S. (2014). A review of hydrothermal biomass processing. Renewable and Sustainable Energy Review, 40, 67; doi: 10.1016/j.rser.2014.07.216
  33. Titirici, M. M. (2013). Sustainable Carbon Materials from Hydrothermal Processes (New York: John Wiley & Sons) p.131
  34. Unrean, P., Lai Fui, B.C., Rianawati, E., & Acda, M., (2018). Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies. Energy, 151, 581–593; doi: 10.1016/
  35. Wang, T., Zhaia, Y., Zhuc, Y., Lia, C., & Guangming, G. (201). A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties, Renewable and Sustainable Energy Reviews, 90, 223–247; doi: 10.1016/j.rser.2018.03.071
  36. Wei, Y., Hong, J., & Ji, W. (2018). Thermal characterization and pyrolysis of digestate for phenol production. Fuel, 232, 141-146; doi: 10.1016/j.fuel.2018.05.134
  37. Xu, Q., Qian, Q., Quek, A., Ai, N., Zeng, G., & Wang, J. (2013). Hydrothermal Carbonization of Macroalgae and the Effects of Experimental Parameters on the Properties of Hydrochars. ACS Sustainable Chemistry and Engineering, , 1092-1101; doi: 10.1021/sc400118f
  38. Zhang, Z., Wang, K., Atkinson, J. D., Yan, X., Li, X., Rood, M. J., & Yan. (2012). Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. Journal of Hazardous Materials, 229–230, 183–191; doi: 10.1016/j.jhazmat.2012.05.094
  39. Zhang, Z., Zhu., Z., Shen, B., & Liu., L. (2019). Insights into biochar and hydrochar production and applications: A review. Energy, 171, 581-598; doi: 10.1016/
  40. Zeng, G., Lou, S., Ying, H., Wu, X., Dou, X., Ai, N., & Wang, J. (2018). Preparation of Microporous Carbon from Sargassum horneri by Hydrothermal Carbonization and KOH Activation for CO2 Capture. Journal of Chemistry, 2018, 4319149 11; doi: 10.1155/2018/4319149

Last update:

  1. Production of value-added hydrochar from single-mode microwave hydrothermal carbonization of oil palm waste for de-chlorination of domestic water

    Peter Nai Yuh Yek, Rock Keey Liew, Wan Adibah Wan Mahari, Wanxi Peng, Christian Sonne, Sieng Huat Kong, Meisam Tabatabaei, Mortaza Aghbashlo, Young-Kwon Park, Su Shiung Lam. Science of The Total Environment, 833 , 2022. doi: 10.1016/j.scitotenv.2022.154968
  2. Parameter study in preparation of nitrogen-rich-activated carbon for supercapacitors' application using multilevel factorial design

    Heri Rustamaji, Tirto Prakoso, Hary Devianto, Pramujo Widiatmoko. Materials Today: Proceedings, 2023. doi: 10.1016/j.matpr.2023.04.163
  3. Effect of the non-uniform combustion core shape on the biochar production characteristics of the household biomass gasifier stove

    Somchet Chaiyalap, Ritthikrai Chai-ngam, Juthaporn Saengprajak, Jenjira Piamdee, Apipong Putkham, Arnusorn Saengprajak. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.56575
  4. Density functional theory study of acid-catalyzed conversion of glucose to hydrochar precursors under hydrothermal conditions

    Shuai Guo, Quanrui Liu, Deng Zhao, Zhaoyuan Liu, Kaixin Chen, Xingcan Li, Guangyu Li. Energy, 283 , 2023. doi: 10.1016/
  5. Hydrochar from Sargassum muticum: a sustainable approach for high-capacity removal of Rhodamine B dye

    D. Spagnuolo, D. Iannazzo, T. Len, A. M. Balu, M. Morabito, G. Genovese, C. Espro, V. Bressi. RSC Sustainability, 1 (6), 2023. doi: 10.1039/D3SU00134B
  6. Methods for enhancing the properties of products from food waste via hydrothermal carbonation (HTC): Gradient-enzymatic-pretreatment-nitrogen-migration-strategy

    Shuai Ran, Xin Zhang, Yue Jiang, Ying Gao, Hui Xu, Hui Ying Yang, Jiayu Xu, Yuang Wang, Yuan Guo, Hong Zhang, Yinong Lyu. Energy, 282 , 2023. doi: 10.1016/
  7. Hydrothermal Carbonization of Spent Coffee Grounds for Producing Solid Fuel

    Yulin Hu, Rhea Gallant, Shakirudeen Salaudeen, Aitazaz A. Farooque, Sophia He. Sustainability, 14 (14), 2022. doi: 10.3390/su14148818
  8. Chemical Substitutes from Agricultural and Industrial By‐Products

    Mohamad F. Ibrahim, Nurshazana Mohamad, Mariam J. M. Fairus, Mohd A. Jenol, Suraini Abd‐Aziz. 2024. doi: 10.1002/9783527841141.ch6

Last update: 2023-11-29 23:05:43

No citation recorded.