Department of Mechanical Engineering, University of Engineering and Technology Lahore, Pakistan
BibTex Citation Data :
@article{IJRED38748, author = {Naseer Ahmad}, title = {MATLAB/Simulink Based Instantaneous Solar Radiation Modeling, Validation and Performance Analysis of Fixed and Tracking Surfaces for the Climatic Conditions of Lahore City, Pakistan}, journal = {International Journal of Renewable Energy Development}, volume = {11}, number = {3}, year = {2022}, keywords = {Solar Radiation; Modeling; Performance analysis; Tracking Systems.}, abstract = { Mathematical modeling, simulation and experimental validation of instantaneous solar radiation is conducted in this article. The input parameters of the developed model are solar constant, latitude & longitude of the selected site, collector surface azimuth and elevation angle. The whole model is developed in MATLAB/Simulink and plots global radiation for any selected day of the year. To validate the model, actual data from RETScreen (energy management software) is taken and compared with the predicted data from developed model. During the whole year the predicted specific insolation is 226.65 MJ/m 2 /day and actual is 202.14 MJ/m 2 /day. The percentage error of the predicted data is 10.8% higher than the actual data. The validated model is used to calculate the monthly received solar radiation energy for the fixed surface and tracking surface. The yearly harvested solar energy by horizontal, yearly and monthly optimal tilt surfaces are 6828 MJ/m 2 , 7405 MJ/m 2 and 7761 MJ/m 2 respectively. Yearly insolation gain of the yearly optimal tilt and monthly optimal tilt collector surface is 8% and 14% as compared to the energy harvested by horizontal surface. For the single and dual axis tracking surfaces, yearly harvested energy is 8843 MJ/m 2 and 9374 MJ/m 2 respectively and this figure is 30% and 37% more as compared to the horizontal surface. If the insolation received by yearly optimal tilt is considered as reference value, then energy gain for monthly tilt, single and dual axis tracking is recorded as 5%, 19% and 27% respectively }, pages = {608--619} doi = {10.14710/ijred.2022.38748}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/38748} }
Refworks Citation Data :
Mathematical modeling, simulation and experimental validation of instantaneous solar radiation is conducted in this article. The input parameters of the developed model are solar constant, latitude & longitude of the selected site, collector surface azimuth and elevation angle. The whole model is developed in MATLAB/Simulink and plots global radiation for any selected day of the year. To validate the model, actual data from RETScreen (energy management software) is taken and compared with the predicted data from developed model. During the whole year the predicted specific insolation is 226.65 MJ/m2/day and actual is 202.14 MJ/m2/day. The percentage error of the predicted data is 10.8% higher than the actual data. The validated model is used to calculate the monthly received solar radiation energy for the fixed surface and tracking surface. The yearly harvested solar energy by horizontal, yearly and monthly optimal tilt surfaces are 6828 MJ/m2, 7405 MJ/m2 and 7761 MJ/m2 respectively. Yearly insolation gain of the yearly optimal tilt and monthly optimal tilt collector surface is 8% and 14% as compared to the energy harvested by horizontal surface. For the single and dual axis tracking surfaces, yearly harvested energy is 8843 MJ/m2 and 9374 MJ/m2 respectively and this figure is 30% and 37% more as compared to the horizontal surface. If the insolation received by yearly optimal tilt is considered as reference value, then energy gain for monthly tilt, single and dual axis tracking is recorded as 5%, 19% and 27% respectively
Article Metrics:
Last update:
PAOFCDN: A novel method for predictive analysis of solar irradiance
Last update: 2024-11-14 12:10:26
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.