skip to main content

Desalination of Agricultural Wastewater by Solar Adsorption System: A Numerical Study

1Department of Energy Engineering, University of Baghdad, Baghdad 10071, Iraq

2Al-Khawarizmi College of Engineering, University of Baghdad, Baghdad 10071, Iraq

3Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College, Babylon 51001, Iraq

Received: 3 Jun 2021; Revised: 20 Jul 2021; Accepted: 5 Aug 2021; Available online: 16 Aug 2021; Published: 1 Nov 2021.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to solve the mass and heat balance equations for the adsorbent bed, condenser, and evaporator components. At a typical temperature of 89 °C and flow rate of 30 m3/sec for the hot water entering the bed, the following results are reported: (a) the specific daily water production of 1.89 m3 /ton of silica gel/ day, (b) coefficient of performance of 0.32, and (c) specific cooling power of 40.82 W/kg of silica gel. The concentration of salt (X) in the product (desalinated water) has been set with value of 0.5 gm/kg to be suitable for drinking and irrigation. The salt concentration in the evaporator is estimated to be 4.611 gm/kg during the overall adsorption process. The results from this study should be of wide interest for the field of solar water desalination and air-conditioning.
Fulltext View|Download
Keywords: Solar desalination; Agricultural wastewater; Adsorption; Single bed; numerical modelling

Article Metrics:

  1. Ali, E. S., Mohammed, R. H., & Askalany, A. (2021). A daily freshwater production of 50 m3/ton of silica gel using an adsorption-ejector combination powered by low-grade heat. Journal of Cleaner Production, 282, 124494.
  2. Ali, S. M., & Chakraborty, A. (2016). Adsorption assisted double stage cooling and desalination employing silica gel + water and AQSOA-Z02 + water systems. Energy Conversion And Management, 117, 193–205.
  3. Alnajdi, O., Wu, Y., & Calautit, J. K. (2020). Toward a sustainable decentralizedwater supply: Review of adsorption desorption desalination (ADD) and current technologies: Saudi Arabia (SA) as a case study. Water (Switzerland), 12(4), 1–30.
  4. Alsaman, A. S., Askalany, A. A., Harby, K., & Ahmed, M. S. (2017). Performance evaluation of a solar-driven adsorption desalination- cooling system. 128, 196–207
  5. Amirfakhraei, A., Zarei, T., & Khorshidi, J. (2020). Performance improvement of adsorption desalination system by applying mass and heat recovery processes. Thermal Science and Engineering Progress, 18, 100516.
  6. Aziz, A. A. A., Hatab, S. I., Moawed, M., Zohir, A. E., & Berbish, N. M. (2017). Experimental study on the Effect of adsorber with three shapes of conductive material on Performance of Adsorption Refrigeration Tube using Activated Carbon/ethanol pair. In Applied Thermal Engineering. Elsevier Ltd.
  7. Bai, S., Ho, T. C., Ha, J., An, A. K., & Tso, C. Y. (2020). Study of the salinity effects on the cooling and desalination performance of an adsorption cooling cum desalination system with a novel composite adsorbent. 181.
  8. Chua, H. T., Ng, K. C., Chakraborty, A., Oo, N. M., & Othman, M. A. (2002). Adsorption Characteristics of Silica Gel + Water Systems. 1177–1181.
  9. Dechang, W., Jingyi, W., Honggang, S., & Ruzhu, W. (2005). Experimental study on the dynamic characteristics of adsorption heat pumps driven by intermittent heat source at heating mode. Applied Thermal Engineering, 25(5–6), 927–940.
  10. Goshayeshi, H. R., Gewad, M., & Nazari, H. (2015). Investigation on Evaluation of a Solar Intermittent Refrigeration System for Ice Production with Ammonia/Calcium Chloride and Activated. Energy and Power Engineering, 07(10), 433–439.
  11. Hassan, H. Z., Mohamad, A. A., & Bennacer, R. (2011). Simulation of an adsorption solar cooling system. Energy, 36(1), 530–537.
  12. Iloeje, O. C., Ndili, A. N., & Enibe, S. O. (1995). Computer simulation of a CaCl2 solid-adsorption solar refrigerator. Energy, 20(11), 1141–1151.
  13. Jahannoosh, M., Nowdeh, S. A., Naderipour, A., Kamyab, H., Davoudkhani, I. F., & Klemeš, J. J. (2021). New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability. Journal of Cleaner Production, 278.
  14. Lattieff, F. A., Atiya, M. A., & Al-Hemiri, A. A. (2019). Test of solar adsorption air-conditioning powered by evacuated tube collectors under the climatic conditions of Iraq. Renewable Energy, 142, 20–29.
  15. Li, C. H., Wang, R. Z., & Dai, Y. J. (2003). Simulation and economic analysis of a solar-powered adsorption refrigerator using an evacuated tube for thermal insulation. Renewable Energy, 28(2), 249–269.
  16. Luiz, F., & Netto, D. E. M. (2007). Universidade Estadual De Campinas
  17. Mikhaeil, M., Gaderer, M., & Dawoud, B. (2020). On the Development of an Innovative Adsorber Plate Heat Exchanger for. Energy, 118272.
  18. Miyazaki, T., & Akisawa, A. (2009). The influence of heat exchanger parameters on the optimum cycle time of adsorption chillers. Applied Thermal Engineering, 29(13), 2708–2717.
  19. Mohammadzadeh Kowsari, M., Niazmand, H., & Tokarev, M. M. (2018). Bed configuration effects on the finned flat-tube adsorption heat exchanger performance: Numerical modeling and experimental validation. Applied Energy, 213, 540–554.
  20. Mohammed, R. H., Mesalhy, O., Elsayed, M. L., & Chow, L. C. (2017). Novel compact bed design for adsorption cooling systems: parametric numerical study. International Journal of Refrigeration.
  21. Naderipour, A., Abdul-malek, Z., Arshad, R. N., Kamyab, H., Chelliapan, S., Ashokkumar, V., & Tavalaei, J. (2021). Assessment of carbon footprint from transportation, electricity, water, and waste generation : towards utilisation of renewable energy sources. Clean Technologies and Environmental Policy, 23(1), 183–201.
  22. Naeimi, A., Nowee, S. M., Ali, H., & Amiri, A. (2020). Chemical Engineering Research and Design Numerical simulation and theoretical investigation of a multi-cycle dual-evaporator adsorption desalination and cooling system. Chemical Engineering Research and Design, 156, 402–413.
  23. Ng, K. C., Thu, K., Chakraborty, A., Saha, B. B., & Chun, W. G. (2009). Solar-assisted dual-effect adsorption cycle for the production of cooling effect and potable water. International Journal of Low-Carbon Technologies, 4(2), 61–67.
  24. Qu, T. F., Wang, R. Z., & Wang, W. (2001). Study on heat and mass recovery in adsorption refrigeration cycles. 21, 439–452
  25. Raj, R., & Baiju, V. (2019). Thermodynamic analysis of a solar powered adsorption cooling and desalination system. Energy Procedia, 158, 885–891.
  26. Rezk, H., Alsaman, A. S., Al-Dhaifallah, M., Askalany, A. A., Abdelkareem, M. A., & Nassef, A. M. (2019). Identifying optimal operating conditions of solar-driven silica gel based adsorption desalination cooling system via modern optimization. Solar Energy, 181, 475–489.
  27. Sakoda, A., & Suzuki, M. (1984). Fundamental study on solar powered adsorption cooling system. Journal of Chemical Engineering of Japan, 17(1), 52–57.
  28. Sumathy, K., & Zhongfu, L. I. (1999). Experiments With Solar-Powered Adsorption Ice-Maker. 16, 704–707
  29. Thu, K., Chakraborty, A., Saha, B. B., & Ng, K. C. (2013). Thermo-physical properties of silica gel for adsorption desalination cycle. Applied Thermal Engineering, 50(2), 1596–1602.
  30. Thu, K., Chakraborty, A., Kim, Y., Myat, A., Baran, B., & Choon, K. (2013). Numerical simulation and performance investigation of an advanced adsorption desalination cycle. DES, 308, 209–218.
  31. Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., & Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renewable and Sustainable Energy Reviews, 24, 499–513.
  32. Wang, W., & Wang, R. (2005). Investigation of non-equilibrium adsorption character in solid adsorption refrigeration cycle. 680–684.
  33. Woo, S. Y., Lee, H. S., Ji, H., Moon, D. S., & Kim, Y. D. (2019). Silica gel-based adsorption cooling cum desalination system: Focus on brine salinity, operating pressure, and its effect on performance. Desalination, 467, 136–146.
  34. Youssef, P. G., Mahmoud, S. M., & Al-dadah, R. K. (2015). Performance analysis of four bed adsorption water desalination / refrigeration system , comparison of AQSOA-Z02 to silica - gel. DES, 375, 100–107.
  35. Zejli, D., Benchrifa, R., Bennouna, A., & Bouhelal, O. K. (2004). A solar adsorption desalination device: First simulation results. Desalination, 168(1–3), 127–135.
  36. Zhang, H., Ma, H., Liu, S., Wang, H., Sun, Y., & Qi, D. (2020). Investigation on the operating characteristics of a pilot-scale adsorption desalination system. Desalination, 473, 114196.

Last update:

  1. Technological and Economic Optimization of Wheat Straw Black Liquor Decolorization by Activated Carbon

    Gabriel Dan Suditu, Elena Niculina Drăgoi, Adrian Cătălin Puițel, Mircea Teodor Nechita. Water, 15 (16), 2023. doi: 10.3390/w15162911
  2. Productivity and economy prediction for a solar-powered natural vacuum desalination system via water-filling and air-releasing in Asia

    Manhui Wei, Chenglong Zhong, Jian Liu, Hanwen Xu, Junfeng Chen, Jianhua Xiang, Keliang Wang, Hongfei Zheng. Energy Conversion and Management, 260 , 2022. doi: 10.1016/j.enconman.2022.115570
  3. Experimental investigation on the performance of a pyramid solar still for varying water depth, contaminated water temperature, and addition of circular fins

    Mayilsamy Yuvaperiyasamy, Natarajan Senthilkumar, Balakrishnan Deepanraj. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.57327

Last update: 2023-11-30 14:36:31

No citation recorded.