skip to main content

Optimization of Monochloroacetic Acid Biodegradation by Recombinant E. coli BL21 (DE3)/pET-bcfd1 Carrying Haloacid Dehalogenase Gene from Bacillus cereus IndB1

1Biochemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia

2Mycrobiology Division, Research Center for Biology, Indonesian Institute of Sciences, Indonesia

Received: 20 May 2021; Revised: 1 Jul 2021; Accepted: 8 Jul 2021; Available online: 14 Jul 2021; Published: 1 Nov 2021.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2021 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In recent years, attention to microbial dehalogenase has continually increased due to its potential application, both in bioremediation and in the biosynthesis of fine chemicals. Many microbial recombinant strains carrying dehalogenase gene have been developed, particularly to increase the dehalogenase production and its quality. In this study, we aimed to find the optimum condition for the production of active haloacid dehalogenase by E. coli BL21 (DE3) harboring recombinant plasmid pET-bcfd1 that carried haloacid dehalogenase gene from Bacillus cereus IndB1 local strain. This would be examined by assessing the ability of whole cell life culture to degrade monochloroacetic acid (MCA) and quantifying the chloride ion released into the medium. Several variables were evaluated to find this optimal condition. We found that the best condition for MCA biodegradation using this recombinant clone was at 0.2 mM MCA, 10 μM of isopropyl β-D-1-thiogalactopyranoside (IPTG), 6 hours of pre-induction incubation at 37ºC with shaking, 2 hours IPTG induction at 30ºC with shaking, at pH 7 in Luria Bertani (LB) liquid medium without NaCl, which produced about 0.056 mM chloride ions. Inducer concentration, pre-induction incubation time and temperature, as well as induction time and temperature were apparent to be associated with the expression of the protein, while the MCA concentration and the pH of the medium influenced the ability of the recombinant E. coli BL21 (DE3)/pET-bcfd1 to grow in toxic environment. Our findings laid the foundation for exploration of dehalogenases from local Bacillus strains through genetic engineering for MCA biodegradation
Fulltext View|Download
Keywords: biodegradation; haloacid dehalogenase; monochloroacetic acid

Article Metrics:

  1. Abatenh, E., Gizaw, B., Tsegaye, Z., & Wassie, M. (2017). The Role of Microorganisms in Bioremediation: A Review. Open Journal of Environmental Biology, 2(1), 38–46. https://doi.org/10.17352/ojeb.000007
  2. Adamu, A., Wahab, R. A., Aliyu, F., Aminu, A. H., Hamza, M. M., & Huyop, F. (2020). Haloacid dehalogenases of Rhizobium sp. and related enzymes: Catalytic properties and mechanistic analysis. Process Biochemistry, 92, 437–446. https://doi.org/10.1016/j.procbio.2020.02.002
  3. Alomar, D., Hamid, A. A. A., Khosrowabadi, E., Gicana, R. G., Lamis, R. J., Huyop, F., & Hamid, T. H. T. A. (2014). Molecular characterization of monochloroacetate degrading Arthrobacter sp. strain D2 isolated from University Teknologi Malaysia agricultural area. Bioremediation Journal, 18(1) 12-19. https://doi.org/10.1080/10889868.2013.834867
  4. Ang, T. F., Maiangwa, J., Salleh, A. B., Normi, Y. M., & Leow, T. C. (2018). Dehalogenases: From improved performance to potential microbial dehalogenation applications. Molecules, 23(5), 1–40. https://doi.org/10.3390/molecules23051100
  5. Bergmann, J. G., & Sanik, J. (1957). Determination of trace amounts of chlorine in naphtha. Analytical Chemistry, 29(2), 241–243. https://doi.org/10.1021/ac60122a018
  6. European Commission. (2005). European Union Risk Assessment Report. Monochloroacetic acid
  7. Fazaeli, A., Golestani, A., Lakzaei, M., Varaei, S. S. R., & Aminian, M. (2019). Expression optimization, purification, and functional characterization of cholesterol oxidase from Chromobacterium sp. DS1. PLoS ONE, 14(2), 1–15. https://doi.org/10.1371/journal.pone.0212217
  8. Galloway, C. A., Sowden, M. P., & Smith, H. C. (2003). Increasing the yield of soluble recombinant protein expressed in E. coli by Induction during late log phase. BioTechniques, 34(3), 524–530. https://doi.org/10.2144/03343st04
  9. Guengerich, F. P. (1984). Effects of nutritive factors on metabolic processes involving bioactivation and detoxication of chemicals. Annual Review of Nutrition, 4(1), 207–231. https://doi.org/10.1146/annurev.nu.04.070184.001231
  10. Gul, I., Le, W., Jie, Z., Ruiqin, F., Bilal, M., & Tang, L. (2021). Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. TrAC - Trends in Analytical Chemistry, 134, 116145. https://doi.org/10.1016/j.trac.2020.116145
  11. Gutiérrez-González, M., Farías, C., Tello, S., Pérez-Etcheverry, D., Romero, A., Zúñiga, R., Ribeiro, C. H., Lorenzo-Ferreiro, C., & Molina, M. C. (2019). Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-53200-7
  12. Islam, N. F., Sarma, H., and Prasad, M. N. (2020). Emerging disinfection by-products in water: Novel biofiltration techniques. In: Disinfection By-products in Drinking Water. Detection and Treatment. Chapter 5, page109–135. https://doi.org/10.1016/b978-0-08-102977-0.00005-6
  13. Ismail, S. M., Taha, A. M., Jing, N. H., Wahab, R. A., Hamid, A. A., Pakingking, R. V., & Huyop, F. (2008). Biodegradation of monochloroacetic acid by a presumptive Pseudomonas sp. strain R1 bacterium isolated from Malaysian paddy (rice) field. Biotechnology, 7(3), 481-486. http://doi.org/10.3923/biotech.2008.481.486
  14. Ismail, S. N. F., Wahab, R. A., & Huyop, F. (2017). Microbial isolation and degradation of selected haloalkanoic aliphatic acids by locally isolated bacteria: A review. Malaysian Journal of Microbiology, 13(3), 261–272. https://doi.org/10.21161/mjm.92816
  15. Ma, Y., Lee, C. J., & Park, J. S. (2020). Strategies for optimizing the production of proteins and peptides with multiple disulfide bonds. Antibiotics, 9(9), 1–26. https://doi.org/10.3390/antibiotics9090541
  16. Marisch, K., Bayer, K., Cserjan-Puschmann M., Luchner, M., & Striedner, G. (2013). Evaluation of three industrial Escherichia coli strains in fed-batch cultivations during high level SOD protein production. Microbial Cell Factories, 12(58), 1-11. https://doi.org/10.1186/1475-2859-12-58
  17. McRae, B. M., Lapara, T. M., & Hozalski, R. M. (2004). Biodegradation of haloacetic acids by bacterial enrichment cultures. Chemosphere, 55(6), 915–925. https://doi.org/10.1016/j.chemosphere.2003.11.048
  18. Mogk, A., Mayer, M. P., & Deuerling, E. (2010). ChemInform Abstract: Mechanisms of Protein Folding: Molecular Chaperones and Their Application in Biotechnology. ChemInform, 33(46), 272. https://doi.org/10.1002/chin.200246272
  19. Noor, R., Islam, Z., Munshi, S. K., & Rahman, F. (2013). Influence of temperature on Escherichia coli growth in different culture media. Journal of Pure and Applied Microbiology, 7(2), 899–904
  20. Novak, H., & Littlechild, J. (2013). Marine enzymes with applications for biosynthesis of fine chemicals. In: Marine Enzymes for Biocatalysis: Sources, Biocatalytic Characteristics and Bioprocesses of Marine Enzymes. Woodhead Publishing Series in Biomedicine, Chapter 4, page 89-106. https://doi.org/10.1533/9781908818355.1.89
  21. Novak, H. R., Sayer, C., Panning, J., & Littlechild, J. A. (2013). Characterisation of an L-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial Application. Marine Biotechnology, 15(6), 695–705. https://doi.org/10.1007/s10126-013-9522-3
  22. Pacheco, B., Crombet, L., Loppnau, P., & Cossar, D. (2012). A screening strategy for heterologous protein expression in Escherichia coli with the highest return of investment. Protein Expression and Purification, 81(1), 33–41. https://doi.org/10.1016/j.pep.2011.08.030
  23. Ratnaningsih, E., & Idris, I. (2018). Cloning and expression of haloacid dehalogenase gene from Bacillus cereus IndB1. Indonesian Journal of Biotechnology, 22(2), 55. https://doi.org/10.22146/ijbiotech.27338
  24. Riggs, P., Vallie, E. R., & McCoy, J. M. (1994). Introduction to expression by fusion protein vectors. Current Protocols in Molecular Biology, 28(1), 1–4. https://doi.org/10.1002/0471142727.mb1604as28
  25. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5(172), 1–17. https://doi.org/10.3389/fmicb.2014.00172
  26. Rosano, G. L., Morales, E. S., & Ceccarelli, E. A. (2019). New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Science, 28(8), 1412–1422. https://doi.org/10.1002/pro.3668
  27. Sahdev, S., Khattar, S. K., & Saini, K. S. (2008). Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies. Molecular and Cellular Biochemistry, 307(1–2), 249–264. https://doi.org/10.1007/s11010-007-9603-6
  28. Schein, C. H., & Noteborn, M. H. M. (1988). Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nature Biotechnology, 6(3), 291–294. https://doi.org/10.1038/nbt0388-291
  29. Shiloach, J., Kaufman, J., Guillard, A. S., & Fass, R. (1996). Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 (DE3) and Escherichia coli JM109. Biotechnology and Bioengineering, 49(4), 421-428. https://doi.org/10.1002/(SICI) 1097-0290 (19960220) 49:421::AID-BIT9>3.0.CO;2-R
  30. Slater, J. H., Bull, A. T., & Hardman, D. J. (1997). Microbial dehalogenation of halogenated alkanoic acids, alcohols and alkanes. Advances in Microbial Physiology, 38,133–176. https://doi.org/10.1016/s0065-2911(08)60157-5
  31. Su, X., Deng, L., Kong, K. F., & Tsang, J. S. (2013). Enhanced degradation of haloacid by heterologous expression in related Burkholderia spesies. Biotechnology and Bioengineering, 110(10), 2687-2696. https://doi.org/10.1002/bit.24917
  32. Torz, M., & Beschkov, V. (2005). Biodegradation of monochloroacetic acid used as a sole carbon and energy source by Xanthobacter autotrophicus GJ10 strain in batch and continuous culture. Biodegradation, 16(5), 423–433. https://doi.org/10.1007/s10532-004-3614-8
  33. Wang, H., Wang, F., Wang, W., Yao, X., Wei, D., Cheng, H., & Deng, Z. (2014). Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: An alkaline pH shift approach. PLoS ONE, 9(11), 1–11. https://doi.org/10.1371/journal.pone.0112777
  34. Wang, Y., Feng, Y., Cao, X., Liu, Y., & Xue, S. (2018). Insights into the molecular mechanism of dehalogenation catalyzed by D-2-haloacid dehalogenase from crystal structures. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-017-19050-x
  35. Winograd, E., Pulido, M. A., & Wasserman, M. (1993). Production of DNA-recombinant polypeptides by tac-inducible vectors using micromolar concentrations of IPTG. BioTechniques, 14(6), 886–890. https://pubmed.ncbi.nlm.nih.gov/8333949
  36. Yildir, C., Önsan, Z. I., & Kirdar, B. (1998). Optimization of starting time and period of induction and inducer concentration in the production of the restriction enzyme EcoRI from recombinant Escherichia coli 294. Turkish Journal of Chemistry, 22(3), 221–226
  37. Zhang, J., Xin, Y., Cao, X., Xue, S., & Zhang, W. (2014). Purification and characterization of 2-haloacid dehalogenase from marine bacterium Paracoccus sp. DEH99, isolated from marine sponge Hymeniacidon perlevis. Journal of Ocean University of China, 13(1), 91–96. https://doi.org/10.1007/s11802-014-2357-3
  38. Zulkifly, A. H., Roslan, D. D., Hamid, A. A. A., Hamdan, S., & Huyop, F. (2010). Biodegradation of low concentration of monochloroacetic acid degrading Basillus sp. TW1 isolated from Terengganu water treatment and distribution plant. Journal of Applied Sciences, 10(22), 2940-2944. https://doi.org/10.3923/jas.2010.2940.2944

Last update:

No citation recorded.

Last update:

No citation recorded.