skip to main content

Comparative Study on the Various Hydrolysis and Fermentation Methods of Chlorella vulgaris Biomass for the Production of Bioethanol

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gunungpati, Semarang 50299, Indonesia

Received: 29 Sep 2021; Revised: 27 Dec 2021; Accepted: 23 Feb 2022; Available online: 8 Mar 2022; Published: 5 May 2022.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
One of the microalgae that can be potentially used to produce bioethanol is Chlorella vulgaris, as it is rich in carbohydrates. However, the carbohydrates in C. vulgaris cannot be converted directly into ethanol. This study aimed to investigate the chemical and enzymatic hydrolysis of C. vulgaris, which is subsequently followed by fermentation. The catalysts used in the chemical hydrolysis were hydrochloric acid, sodium hydroxide, and potassium hydroxide, while the enzymes used were the mixture of alpha-amylase + glucoamylase, alpha-amylase + cellulase, and alpha-amylase + glucoamylase + cellulase. The hydrolysate obtained from chemical hydrolysis was fermented through Separate Hydrolysis Fermentation (SHF), while the one from enzymatic hydrolysis was fermented through Simultaneous Saccharification and Fermentation (SSF), in which both processes used S. cerevisiae. After undergoing five hours of enzymatic hydrolysis (using alpha-amylase + glucoamylase), the maximum glucose concentration obtained was 9.24 ± 0.240 g/L or yield of 81.39%.  At the same time and conditions of the substrate on chemical hydrolysis, glucose concentration was obtained up to 9.23 + 0.218 g/L with a yield of 73.39% using 1 M hydrochloric acid. These results indicate that chemical hydrolysis is less effective compared to enzymatic hydrolysis. Furthermore, after 48 hours of fermentation, the ethanol produced from SHF and SSF fermentation methods were 4.42 and 4.67 g/L, respectively, implying that producing bioethanol using the SSF is more effective than the SHF method.
Fulltext View|Download
Keywords: Microalgae; enzyme catalyst; chemical catalyst; glucose; S. cerevisiae
Funding: Indonesian Ministry of Education, Culture, Research and Technology (Kemendikbud-Ristek) for research grant 2021 under contract 151/SP2H/LT/DRPM/2021).

Article Metrics:

  1. Agustini, N. W. S., Hidhayati, N., & Wibisono, S. A. (2019). Effect of hydrolysis time and acid concentration on bioethanol production of microalga Scenedesmus sp. IOP Conference Series: Earth and Environmental Science, 308(1), 012029; https://doi.org/10.1088/1755-1315/308/1/012029
  2. Albuquerque, J. C. S., Araújo, M. L. H., Rocha, M. V. P., de Souza, B. W. S., de Castro, G. M. C., Cordeiro, E. M. S., Silva, J. de S., & Benevides, N. M. B. (2021). Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. Algal Research, 53, 102139.; https://doi.org/10.1016/j.algal.2020.102139
  3. Alias, N. H., Abd-Aziz, S., Phang, L. Y., & Ibrahim, M. F. (2021). Enzymatic Saccharification with Sequential-Substrate Feeding and Sequential-Enzymes Loading to Enhance Fermentable Sugar Production from Sago Hampas. Processes, 9(3), 535. https://doi.org/10.3390/pr9030535
  4. Ariyanti, D. and Hadiyanto, H.(2013). Ethanol production from whey by kluyveromyces marxianus in batch fermentation system: Kinetics parameters estimation. Bulletin of Chemical Reaction Engineering and Catalysis, 7(3), 179-184; https://doi.org/10.9767/bcrec.7.3.4044.179-184
  5. Azmi, A. S., Malek, M. I. A., & Puad, N. I. M. (2017). A review on acid and enzymatic hydrolyses of sago starch. International Food Research Journal, 24(12), 265-273
  6. Bader, A. N., Sanchez Rizza, L., Consolo, V. F., & Curatti, L. (2020). Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of ethanol. Algal Research, 48, 101926.; https://doi.org/10.1016/j.algal.2020.101926
  7. Buvé, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., & Loey, A. Van. (2021). Reaction pathways and factors influencing nonenzymatic browning in shelf-stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5698-5721. https://doi.org/10.1111/1541-4337.12850
  8. Coelho, D., Lopes, P. A., Cardoso, V., Ponte, P., Brás, J., Madeira, M. S., Alfaia, C. M., Bandarra, N. M., Gerken, H. G., Fontes, C. M. G. A., & Prates, J. A. M. (2019). Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-41775-0
  9. Constantino, A., Rodrigues, B., Leon, R., Barros, R., & Raposo, S. (2021). Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Research, 56, 102329. https://doi.org/10.1016/j.algal.2021.102329
  10. Dahnum, D., Tasum, S. R., Triwahyuni, E., Nurdin, M., Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia. (68) 107 - 116. https://doi.org/10.1016/j.egypro.2015.03.238
  11. Damayanti, D., Supriyadi, D., Amelia, D., Saputri, D. R., Devi, Y. L. L., Auriyani, W. A., & Wu, H. S. (2021). Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers, 13(17), 2886. https://doi.org/10.3390/polym13172886
  12. de Farias Silva, C. E., Meneghello, D., & Bertucco, A. (2018). A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatalysis and Agricultural Biotechnology, 14, 172-182. https://doi.org/10.1016/j.bcab.2018.02.016
  13. El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E. S., & Jeon, B. H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98-105. https://doi.org/10.1016/j.biortech.2016.07.113
  14. Ellis, A. V., & Wilson, M. A. (2002). Carbon Exchange in Hot Alkaline Degradation of Glucose. Journal of Organic Chemistry, 67(24), 8469-8474. https://doi.org/10.1021/jo025912t
  15. Hafid, H. S., Nor 'Aini, A. R., Mokhtar, M. N., Talib, A. T., Baharuddin, A. S., & Umi Kalsom, M. S. (2017). Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, 67, 95-105. https://doi.org/10.1016/j.wasman.2017.05.017
  16. Hossain, N., Zaini, J., Jalil, R., & Mahlia, T. M. I. (2018). The efficacy of the period of saccharification on oil palm (Elaeis guineensis) Trunk sap hydrolysis. International Journal of Technology, 9(4), 652-662. https://doi.org/10.14716/ijtech.v9i4.1808
  17. Jayaseelan, M., Usman, M., Somanathan, A., Palani, S., Muniappan, G., & Jeyakumar, R. B. (2021). Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability, 13(16), 8797. https://doi.org/10.3390/su13168797
  18. Jeong, S. Y., & Lee, J. W. (2021). Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production. Energies, 14(4), 918. https://doi.org/10.3390/en14040918
  19. Kumar, B., Bhardwaj, N., Agrawal, K., & Verma, P. (2020). Bioethanol Production: Generation-Based Comparative Status Measurements. 155-201. https://doi.org/10.1007/978-981-13-8637-4_7
  20. Kumoro, A. C., Damayanti, A., Bahlawan Z. A. S, Puspawati, H., & Melina, M. (2021). Bioethanol Production from Oil Palm Empty Fruit Bunches Using Saccharomyces cerevisiae Immobilized on Sodium Alginate Beads. Periodica Polytechnica Chemical Engineering. 65(4), 493-504. https://doi.org/10.3311/PPch.16775
  21. Kundu, C., Samudrala, S. P., Kibria, M. A., & Bhattacharya, S. (2021). One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Scientific Reports, 11(1), 1-11. https://doi.org/10.1038/s41598-021-90667-9
  22. Lee, O. K., Oh, Y. K., & Lee, E. Y. (2015). Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresource Technology, 196, 22-27. https://doi.org/10.1016/j.biortech.2015.07.040
  23. Liu, Y., Han, W., Xu, X., Chen, L., Tang, J., & Hou, P. (2020). Ethanol production from waste pizza by enzymatic hydrolysis and fermentation. Biochemical Engineering Journal, 156, 107528. https://doi.org/10.1016/j.bej.2020.107528
  24. Angela, L. A., Rempel, A., Cavanhi, V. A. F., Alves, M., Deamici, K. M., Colla, L. M., & Costa, J. A. V. (2020). Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresource Technology, 301, 122-698. https://doi.org/10.1016/j.biortech.2019.122698
  25. Maslova, O., Stepanov, N., Senko, O., & Efremenko, E. (2019). Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresource Technology, 272, 1-9. https://doi.org/10.1016/j.biortech.2018.09.143
  26. Megawati, Damayanti, A., Dewi Artanti Putri, R., Ash Shiddieqy Bahlawan, Z., Arum Dwi Mastuti, A., & Annisa Tamimi, R. (2022). Hydrolysis of S. platensis Using Sulfuric Acid for Ethanol Production. Materials Science Forum. 1662-9752, (1048), 451-458. https://doi.org/10.4028/www.scientific.net/MSF.1048.451
  27. Mezule, L., Berzina, I., & Strods, M. (2019). The Impact of Substrate-Enzyme Proportion for Efficient Hydrolysis of Hay. Energies, 12, 3526, 12(18), 3526. https://doi.org/10.3390/en12183526
  28. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342-348. https://doi.org/10.1016/j.biortech.2011.10.059
  29. Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and Chemical Modifications in Starch Structure and Reactivity. Chemical Properties of Starch. https://doi.org/10.5772/intechopen.88870
  30. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 357-380. https://doi.org/10.1016/S0021-9258(18)71980-7
  31. Nuhma, M. J., Alias, H., Jazie, A. A., & Tahir, M. (2021). Role of Microalgae as a Source for Biofuel Production in the Future: A Short Review. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 396-412. https://doi.org/10.9767/bcrec.16.2.10503.396-412
  32. Offei, F., Mensah, M., Thygesen, A., & Kemausuor, F. (2018). Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation, 4(4), 99. https://doi.org/10.3390/fermentation4040099
  33. Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1, 2-11. https://doi.org/10.1080/26388081.2020.1715256
  34. Sabiha-Hanim, S., & Halim, N. A. A. (2018). Sugarcane Bagasse Pretreatment Methods for Ethanol Production. Fuel Ethanol Production from Sugarcane. https://doi.org/10.5772/intechopen.81656
  35. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40(12), 3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
  36. Selim, K. A., El-Ghwas, D. E., Easa, S. M., & Hassan, M. I. A. (2018). Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. Fermentation, 4(1), 16. https://doi.org/10.3390/fermentation4010016
  37. Seon, G., Kim, H. S., Cho, J. M., Kim, M., Park, W.-K., & Chang, Y. K. (2020). Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-73816-4
  38. Shokrkar, H., Ebrahimi, S., & Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200, 380-386. https://doi.org/10.1016/j.fuel.2017.03.090
  39. Souza, M. F. de, Rodrigues, M. A., Freitas, S. P., & Bon, E. P. da S. (2020). Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. Algal Research, 50, 101961. https://doi.org/10.1016/j.algal.2020.101961
  40. Sriariyanun, M., Mutrakulcharoen, P., Tepaamorndech, S., Cheenkachorn, K., & Rattanaporn, K. (2019). A Rapid Spectrophotometric Method for Quantitative Determination of Ethanol in Fermentation Products. Oriental Journal of Chemistry, 35(2), 744-750. https://doi.org/10.13005/ojc/350234
  41. Vasić, K., Knez, Ž., & Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3): 753. https://doi.org/10.3390/molecules26030753
  42. Velazquez-Lucio, J., Rodríguez-Jasso, R. M., Colla, L. M., Sáenz-Galindo, A., Cervantes-Cisneros, D. E., Aguilar, C. N., Fernandes, B. D., & Ruiz, H. A. (2018). Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, 5(1), 780-791. https://doi.org/10.18331/BRJ2018.5.1.5
  43. Wang, S, H., XY, Y., L, J., YJ, Z., & FJ, J. (2020). Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 12(3). https://doi.org/10.3390/polym12030530
  44. Xu, Q.-S., Yan, Y.-S., & Feng, J.-X. (2016). Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnology for Biofuels, 9(1), 1-18. https://doi.org/10.1186/s13068-016-0636-5
  45. Yanto, H., Rofiah, A., & Bahlawan, Z. A. S. (2019). Environmental Performance and Carbon Emission Disclosures: A case of Indonesian Manufacturing Companies. Journal of Physics: Conference Series, 1387(1), 12005. https://doi.org/10.1088/1742-6596/1387/1/012005
  46. Zullaikah, S., Utomo, A. T., Yasmin, M., Ong, L. K., & Ju, Y. H. (2019). Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. Advances in Eco-Fuels for a Sustainable Environment, 237-276. https://doi.org/10.1016/B978-0-08-102728-8.00009-7

Last update:

No citation recorded.

Last update:

No citation recorded.