skip to main content

Comparative Study on the Various Hydrolysis and Fermentation Methods of Chlorella vulgaris Biomass for the Production of Bioethanol

Department of Chemical Engineering, Faculty of Engineering, Universitas Negeri Semarang, Gunungpati, Semarang 50299, Indonesia

Received: 29 Sep 2021; Revised: 27 Dec 2021; Accepted: 23 Feb 2022; Available online: 8 Mar 2022; Published: 5 May 2022.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
One of the microalgae that can be potentially used to produce bioethanol is Chlorella vulgaris, as it is rich in carbohydrates. However, the carbohydrates in C. vulgaris cannot be converted directly into ethanol. This study aimed to investigate the chemical and enzymatic hydrolysis of C. vulgaris, which is subsequently followed by fermentation. The catalysts used in the chemical hydrolysis were hydrochloric acid, sodium hydroxide, and potassium hydroxide, while the enzymes used were the mixture of alpha-amylase + glucoamylase, alpha-amylase + cellulase, and alpha-amylase + glucoamylase + cellulase. The hydrolysate obtained from chemical hydrolysis was fermented through Separate Hydrolysis Fermentation (SHF), while the one from enzymatic hydrolysis was fermented through Simultaneous Saccharification and Fermentation (SSF), in which both processes used S. cerevisiae. After undergoing five hours of enzymatic hydrolysis (using alpha-amylase + glucoamylase), the maximum glucose concentration obtained was 9.24 ± 0.240 g/L or yield of 81.39%.  At the same time and conditions of the substrate on chemical hydrolysis, glucose concentration was obtained up to 9.23 + 0.218 g/L with a yield of 73.39% using 1 M hydrochloric acid. These results indicate that chemical hydrolysis is less effective compared to enzymatic hydrolysis. Furthermore, after 48 hours of fermentation, the ethanol produced from SHF and SSF fermentation methods were 4.42 and 4.67 g/L, respectively, implying that producing bioethanol using the SSF is more effective than the SHF method.
Fulltext View|Download
Keywords: Microalgae; enzyme catalyst; chemical catalyst; glucose; S. cerevisiae
Funding: Indonesian Ministry of Education, Culture, Research and Technology (Kemendikbud-Ristek) for research grant 2021 under contract 151/SP2H/LT/DRPM/2021).

Article Metrics:

  1. Agustini, N. W. S., Hidhayati, N., & Wibisono, S. A. (2019). Effect of hydrolysis time and acid concentration on bioethanol production of microalga Scenedesmus sp. IOP Conference Series: Earth and Environmental Science, 308(1), 012029;
  2. Albuquerque, J. C. S., Araújo, M. L. H., Rocha, M. V. P., de Souza, B. W. S., de Castro, G. M. C., Cordeiro, E. M. S., Silva, J. de S., & Benevides, N. M. B. (2021). Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. Algal Research, 53, 102139.;
  3. Alias, N. H., Abd-Aziz, S., Phang, L. Y., & Ibrahim, M. F. (2021). Enzymatic Saccharification with Sequential-Substrate Feeding and Sequential-Enzymes Loading to Enhance Fermentable Sugar Production from Sago Hampas. Processes, 9(3), 535.
  4. Ariyanti, D. and Hadiyanto, H.(2013). Ethanol production from whey by kluyveromyces marxianus in batch fermentation system: Kinetics parameters estimation. Bulletin of Chemical Reaction Engineering and Catalysis, 7(3), 179-184;
  5. Azmi, A. S., Malek, M. I. A., & Puad, N. I. M. (2017). A review on acid and enzymatic hydrolyses of sago starch. International Food Research Journal, 24(12), 265-273
  6. Bader, A. N., Sanchez Rizza, L., Consolo, V. F., & Curatti, L. (2020). Efficient saccharification of microalgal biomass by Trichoderma harzianum enzymes for the production of ethanol. Algal Research, 48, 101926.;
  7. Buvé, C., Pham, H. T. T., Hendrickx, M., Grauwet, T., & Loey, A. Van. (2021). Reaction pathways and factors influencing nonenzymatic browning in shelf-stable fruit juices during storage. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5698-5721.
  8. Coelho, D., Lopes, P. A., Cardoso, V., Ponte, P., Brás, J., Madeira, M. S., Alfaia, C. M., Bandarra, N. M., Gerken, H. G., Fontes, C. M. G. A., & Prates, J. A. M. (2019). Novel combination of feed enzymes to improve the degradation of Chlorella vulgaris recalcitrant cell wall. Scientific Reports, 9(1), 1-11.
  9. Constantino, A., Rodrigues, B., Leon, R., Barros, R., & Raposo, S. (2021). Alternative chemo-enzymatic hydrolysis strategy applied to different microalgae species for bioethanol production. Algal Research, 56, 102329.
  10. Dahnum, D., Tasum, S. R., Triwahyuni, E., Nurdin, M., Abimanyu, H. (2015). Comparison of SHF and SSF processes using enzyme and dry yeast for optimization of bioethanol production from empty fruit bunch. Energy Procedia. (68) 107 - 116.
  11. Damayanti, D., Supriyadi, D., Amelia, D., Saputri, D. R., Devi, Y. L. L., Auriyani, W. A., & Wu, H. S. (2021). Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers, 13(17), 2886.
  12. de Farias Silva, C. E., Meneghello, D., & Bertucco, A. (2018). A systematic study regarding hydrolysis and ethanol fermentation from microalgal biomass. Biocatalysis and Agricultural Biotechnology, 14, 172-182.
  13. El-Dalatony, M. M., Kurade, M. B., Abou-Shanab, R. A. I., Kim, H., Salama, E. S., & Jeon, B. H. (2016). Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 219, 98-105.
  14. Ellis, A. V., & Wilson, M. A. (2002). Carbon Exchange in Hot Alkaline Degradation of Glucose. Journal of Organic Chemistry, 67(24), 8469-8474.
  15. Hafid, H. S., Nor 'Aini, A. R., Mokhtar, M. N., Talib, A. T., Baharuddin, A. S., & Umi Kalsom, M. S. (2017). Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management, 67, 95-105.
  16. Hossain, N., Zaini, J., Jalil, R., & Mahlia, T. M. I. (2018). The efficacy of the period of saccharification on oil palm (Elaeis guineensis) Trunk sap hydrolysis. International Journal of Technology, 9(4), 652-662.
  17. Jayaseelan, M., Usman, M., Somanathan, A., Palani, S., Muniappan, G., & Jeyakumar, R. B. (2021). Microalgal Production of Biofuels Integrated with Wastewater Treatment. Sustainability, 13(16), 8797.
  18. Jeong, S. Y., & Lee, J. W. (2021). Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production. Energies, 14(4), 918.
  19. Kumar, B., Bhardwaj, N., Agrawal, K., & Verma, P. (2020). Bioethanol Production: Generation-Based Comparative Status Measurements. 155-201.
  20. Kumoro, A. C., Damayanti, A., Bahlawan Z. A. S, Puspawati, H., & Melina, M. (2021). Bioethanol Production from Oil Palm Empty Fruit Bunches Using Saccharomyces cerevisiae Immobilized on Sodium Alginate Beads. Periodica Polytechnica Chemical Engineering. 65(4), 493-504.
  21. Kundu, C., Samudrala, S. P., Kibria, M. A., & Bhattacharya, S. (2021). One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Scientific Reports, 11(1), 1-11.
  22. Lee, O. K., Oh, Y. K., & Lee, E. Y. (2015). Bioethanol production from carbohydrate-enriched residual biomass obtained after lipid extraction of Chlorella sp. KR-1. Bioresource Technology, 196, 22-27.
  23. Liu, Y., Han, W., Xu, X., Chen, L., Tang, J., & Hou, P. (2020). Ethanol production from waste pizza by enzymatic hydrolysis and fermentation. Biochemical Engineering Journal, 156, 107528.
  24. Angela, L. A., Rempel, A., Cavanhi, V. A. F., Alves, M., Deamici, K. M., Colla, L. M., & Costa, J. A. V. (2020). Simultaneous saccharification and fermentation of Spirulina sp. and corn starch for the production of bioethanol and obtaining biopeptides with high antioxidant activity. Bioresource Technology, 301, 122-698.
  25. Maslova, O., Stepanov, N., Senko, O., & Efremenko, E. (2019). Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). Bioresource Technology, 272, 1-9.
  26. Megawati, Damayanti, A., Dewi Artanti Putri, R., Ash Shiddieqy Bahlawan, Z., Arum Dwi Mastuti, A., & Annisa Tamimi, R. (2022). Hydrolysis of S. platensis Using Sulfuric Acid for Ethanol Production. Materials Science Forum. 1662-9752, (1048), 451-458.
  27. Mezule, L., Berzina, I., & Strods, M. (2019). The Impact of Substrate-Enzyme Proportion for Efficient Hydrolysis of Hay. Energies, 12, 3526, 12(18), 3526.
  28. Miranda, J. R., Passarinho, P. C., & Gouveia, L. (2012). Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresource Technology, 104, 342-348.
  29. Nawaz, H., Waheed, R., Nawaz, M., & Shahwar, D. (2020). Physical and Chemical Modifications in Starch Structure and Reactivity. Chemical Properties of Starch.
  30. Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry, 153, 357-380.
  31. Nuhma, M. J., Alias, H., Jazie, A. A., & Tahir, M. (2021). Role of Microalgae as a Source for Biofuel Production in the Future: A Short Review. Bulletin of Chemical Reaction Engineering & Catalysis, 16(2), 396-412.
  32. Offei, F., Mensah, M., Thygesen, A., & Kemausuor, F. (2018). Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation, 4(4), 99.
  33. Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1, 2-11.
  34. Sabiha-Hanim, S., & Halim, N. A. A. (2018). Sugarcane Bagasse Pretreatment Methods for Ethanol Production. Fuel Ethanol Production from Sugarcane.
  35. Saha, B. C., Iten, L. B., Cotta, M. A., & Wu, Y. V. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40(12), 3693-3700.
  36. Selim, K. A., El-Ghwas, D. E., Easa, S. M., & Hassan, M. I. A. (2018). Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering. Fermentation, 4(1), 16.
  37. Seon, G., Kim, H. S., Cho, J. M., Kim, M., Park, W.-K., & Chang, Y. K. (2020). Effect of post-treatment process of microalgal hydrolysate on bioethanol production. Scientific Reports, 10(1), 1-12.
  38. Shokrkar, H., Ebrahimi, S., & Zamani, M. (2017). Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel, 200, 380-386.
  39. Souza, M. F. de, Rodrigues, M. A., Freitas, S. P., & Bon, E. P. da S. (2020). Effect of milling and enzymatic hydrolysis in the production of glucose from starch-rich Chlorella sorokiniana biomass. Algal Research, 50, 101961.
  40. Sriariyanun, M., Mutrakulcharoen, P., Tepaamorndech, S., Cheenkachorn, K., & Rattanaporn, K. (2019). A Rapid Spectrophotometric Method for Quantitative Determination of Ethanol in Fermentation Products. Oriental Journal of Chemistry, 35(2), 744-750.
  41. Vasić, K., Knez, Ž., & Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules, 26(3): 753.
  42. Velazquez-Lucio, J., Rodríguez-Jasso, R. M., Colla, L. M., Sáenz-Galindo, A., Cervantes-Cisneros, D. E., Aguilar, C. N., Fernandes, B. D., & Ruiz, H. A. (2018). Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal, 5(1), 780-791.
  43. Wang, S, H., XY, Y., L, J., YJ, Z., & FJ, J. (2020). Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers, 12(3).
  44. Xu, Q.-S., Yan, Y.-S., & Feng, J.-X. (2016). Efficient hydrolysis of raw starch and ethanol fermentation: a novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnology for Biofuels, 9(1), 1-18.
  45. Yanto, H., Rofiah, A., & Bahlawan, Z. A. S. (2019). Environmental Performance and Carbon Emission Disclosures: A case of Indonesian Manufacturing Companies. Journal of Physics: Conference Series, 1387(1), 12005.
  46. Zullaikah, S., Utomo, A. T., Yasmin, M., Ong, L. K., & Ju, Y. H. (2019). Ecofuel conversion technology of inedible lipid feedstocks to renewable fuel. Advances in Eco-Fuels for a Sustainable Environment, 237-276.

Last update:

  1. Potential of cellulose from wood waste for immobilization Saccharomyces cerevisiae in bioethanol production

    Agus Wedi Pratama, Tri Mulyono, Bambang Piluharto, Nurul Widiastuti, Melbi Mahardika, Badrut Tamam Ibnu Ali, Asranudin, Dalia Allouss, Ilias El Alaoui-Elbalrhiti. Journal of the Indian Chemical Society, 100 (11), 2023. doi: 10.1016/j.jics.2023.101106
  2. The Potential Bioethanol Production from The Starch of Breadfruit Peel– A Review Case in Indonesia

    Z A S Bahlawan, Megawati, B Triwibowo, A Damayanti, A Y Maulana, D E C Tassabila, R Ichwan. IOP Conference Series: Earth and Environmental Science, 1203 (1), 2023. doi: 10.1088/1755-1315/1203/1/012038
  3. Integrating microalgae into textile wastewater treatment processes: Advancements and opportunities

    Vandana Mishra, Nikhil Mudgal, Deepak Rawat, Pankaj Poria, Paromita Mukherjee, Udita Sharma, Poonam Kumria, Balaram Pani, Mrinalini Singh, Archana Yadav, Furqan Farooqi, Radhey Shyam Sharma. Journal of Water Process Engineering, 55 , 2023. doi: 10.1016/j.jwpe.2023.104128
  4. Bioethanol production from glucose obtained from enzymatic hydrolysis of Chlorella microalgae

    Megawati, Zuhriyan Ash Shiddieqy Bahlawan, Astrilia Damayanti, Radenrara Dewi Artanti Putri, Bayu Triwibowo, Haniif Prasetiawan, Septian Putra Kusuma Aji, Adi Prawisnu. Materials Today: Proceedings, 63 , 2022. doi: 10.1016/j.matpr.2022.03.551
  5. From Microalgae to Bioenergy: Recent Advances in Biochemical Conversion Processes

    Sheetal Kishor Parakh, Zinong Tian, Jonathan Zhi En Wong, Yen Wah Tong. Fermentation, 9 (6), 2023. doi: 10.3390/fermentation9060529
  6. Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation

    Banafsha Ahmed, Shivi Tyagi, Ali Mohammad Rahmani, A.A. Kazmi, Sunita Varjani, Vinay Kumar Tyagi. Science of The Total Environment, 829 , 2022. doi: 10.1016/j.scitotenv.2022.154621
  7. Recent advances in hydrogen production from biomass waste with a focus on pyrolysis and gasification

    Van Giao Nguyen, Thanh Xuan Nguyen-Thi, Phuoc Quy Phong Nguyen, Viet Dung Tran, Ümit Ağbulut, Lan Huong Nguyen, Dhinesh Balasubramanian, Wieslaw Tarelko, Suhaib A. Bandh, Nguyen Dang Khoa Pham. International Journal of Hydrogen Energy, 2023. doi: 10.1016/j.ijhydene.2023.05.049
  8. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review

    Mohammad Hazaimeh. Environmental Science and Pollution Research, 30 (51), 2023. doi: 10.1007/s11356-023-30190-8

Last update: 2023-12-04 16:40:39

No citation recorded.