skip to main content

Control of Bidirectional DC-DC Converter for Micro-Energy Grid’s DC Feeders' Power Flow Application

Research Center for Microgrid of New Energy, College of Electrical Engineering and New Energy (CEENE), China Three Gorges University (CTGU), Yichang 440033, China

Received: 9 Oct 2021; Revised: 10 Jan 2022; Accepted: 15 Mar 2022; Available online: 27 Mar 2022; Published: 5 May 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Concerns about fuel exhaustion, electrical energy shortages, and global warming are growing due to the global energy crisis. Renewable energy-based distributed generators can assist in meeting rising energy demands. Micro-energy grids have become a research hotspot as a crucial interface for connecting the power produced by renewable energy resources-based distributed generators to the power system. The integration of micro-energy grid technology at the load level has been the focus of recent studies. Direct Current Micro-energy-grids have been one of the major research fields in recent years due to the inherent advantages of DC systems over AC systems, such as compatibility with renewable energy sources, storage devices, less losses, and modern loads. Nevertheless, control and stability of the grid are the paramount constituents for the reliable operation of power systems, whether at generation or load level. This research article focuses on the power flow between DC feeders of an autonomous DC micro-energy grid. To achieve this objective, a mathematical model and classical control strategy for power flow between two DC feeders are proposed using a conventional dual active bridge converter. The control objective is to minimize the DC element in the High-Frequency Transformer. Firstly, the non-linear-switched converter model and generalized average model for converter control are presented. Then, these mathematical models are used to get a small-signal linear model so a classical control strategy can be implemented. The control method enables output voltage regulation while abstaining from the high-frequency transformer's winding saturation. The stability analysis endorses the validity of the proposed control scheme. Also, the system response to load changes and varying control parameters is consistent. The simulation results validate the proposal's performance for changing converter and control parameters.
Fulltext View|Download
Keywords: Classical Control; DC Micro-energy-grid (MEG); Dual Active Bridge (DAB) Converter; Generalized Average Model (GAM); High Frequency Transformer (HFT); Small Signal Linear Model; Stability.

Article Metrics:

  1. Aboushady, A.A., Ahmed, K.H., & Abdelsalam, I. (2021). Modified dual active bridge DC/DC converter with improved efficiency and interoperability in hybrid LCC/VSC HVDC transmission grids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(6), 6963-6973, DOI: 10.1109/JESTPE.2020.3031257
  2. Adam, G.P., Gowaid, I.A., Finney, S.J., Holliday, D., & Williams, B.W. (2016). Review of dc–dc converters for multi-terminal HVDC transmission networks. IET Power Electronics, 9(2), 281-296
  3. Baddipadiga, B.P., & Ferdowsi, M. (2014). Dual loop control for eliminating DC-bias in a DC-DC dual active bridge converter. International Conference on Renewable Energy Resources Applications (ICRERA), Milwaukee, WI, 490-495
  4. Bharath, K.R., Mithun, M.K., & Kanakasabapathy, P. (2019). A review on DC Microgrid control techniques, applications and trends. International Journal Of Renewable Energy Research, 9(3), 1328-1338
  5. Bu, Q., Wen, H., Wen, J., Hu, Y., & Du, Y. (2020). Transient DC bias elimination of dual-active-bridge DC–DC converter with improved triple-phase-shift control. IEEE Transactions on Industrial Electronics, 67(10), 8587–8598; DOI: 10.1109/TIE.2019.2947809
  6. Cardozo, D.M., Balda, J.C., Trowler, D., & Mantooth, H.A. (2010). Novel nonlinear control of dual active bridge using simplified converter model. Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA; DOI: 10.1109/APEC.2010.5433651
  7. Choghadi, M.A., & Talebi, H.A. (2013). The Routh–Hurwitz stability criterion revisited: The case of multiple poles on imaginary axis. IEEE Transactions on Automatic Control, 58(7), 1866-1869
  8. Costa, P.F.S., Lobler, P.H.B., Roggia, L., & Schuch, L. (2021). Modeling and control of DAB converter applied to batteries charging. IEEE Transactions on Energy Conversion (Early Access); DOI: 10.1109/TEC.2021.3082468
  9. Cupelli, M., Gurumurthy, S.K., Bhanderi, S.K., Yang, Z., Joebges, P., & Monti, A. (2019). Port controlled Hamiltonian modeling and IDA-PBC control of dual active bridge converters for DC microgrids. IEEE Transactions on Industrial Electronics, 66(11) 9065–9075; DOI: 10.1109/TIE.2019.2901645
  10. Dong, X., Yong, S., & Jianhui, S. (2018). Modeling and control of parallel dual-active-bridge converter in PET. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), 1362-1367, Wuhan, China; doi: 10.1109/ICIEA.2018.8397921
  11. Engel, S.P., Stieneker, M., Soltau, N., Rabiee, S., Stagge, H., & De Doncker, R.W. (2015). Comparison of the Modular Multilevel DC Converter and the Dual-Active Bridge Converter for Power Conversion in HVDC and MVDC Grids. IEEE Transactions on Power Electronics, 30(11) 124-137; DOI: 10.1109/TPEL.2014.2310656
  12. El-Shahat, A., & Sumaiya, S. (2019). DC-Microgrid system design, control, and analysis. Electronics, 8(2); DOI: 10.3390/electronics8020124
  13. Farsizadeh, H., Gheisarnejad, M., Mosayebi, M., Rafiei, M., & Khooban, M.H. (2020). An intelligent and fast controller for DC/DC converter feeding CPL in a DC microgrid. IEEE Transactions on Circuits and Systems II, 67(6), 1104–1108; DOI: 10.1109/TCSII.2019.2928814
  14. Gierczynski, M., Grzesiak, & L.M., Kaszewski, A. (2021). A Dual Rising Edge Shift Algorithm for Eliminating the Transient DC-Bias Current in Transformer for a Dual Active Bridge Converter. Energies, 14, Article no. 4264. https://doi.org/ 10.3390/en14144264
  15. Gill, L., Ikari, T., Kai, T., Li, B., Ngo, K., & Dong, D. (2019) Medium voltage dual active bridge using 3.3kv sic MOSFETS for ev-charging application. IEEE Energy Conversion Congress Exposition, 1237–1244
  16. He, P., & Khaligh, A. (2017). Comprehensive analyses and comparison of 1kW isolated DC-DC converters for bidirectional EV charging systems. IEEE Transactions on Transportaion Electrification, 3(1), 147-156
  17. Hossain, M.Z., Rahim, N.A., & Selvaraj, J. (2018). Recent progress and development on power DC-DC converter topology, control, design and applications: A review. Renewable and Sustainable Energy reviews, 81(1), 205-230
  18. Hu, J., Zhang, Y., Cui, S., Joebges, P., & Donker, R.W. (2019). A partial-power regulated hybrid modular dc-dc converter to interconnect mvdc and LVDC grids. IEEE 10th International Symposium Power Electronics, Distribution, & Generation System, 1030–1035
  19. Hu, J., Joebges, P., Pasupuleti, G.C., Averous, N.R., & Donkers, R.W. (2019). A maximum-output-power-point-tracking-controlled dual active bridge converter for PV energy integration into MVDC grids. IEEE Transactions on Energy Conversion, 34(1), 170–180
  20. Iyer, V.M., Gulur, S., Gohil, G., & Bhattacharya, S. (2020). An approach towards extreme fast charging station power delivery for electric vehicles with partial power Processing. IEEE Transactions on Industrial Electronics, 67(10), 8076–8087; DOI: 10.1109/TIE.2019.2945264
  21. Jeong, D.-K., Kim, H. –S., Baek, J. –W., Kim, J.-Y, & Kim, H.-J. (2016). Dual active bridge converter for Energy Storage System in DC microgrid. 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 152-156, Busan, South Korea; doi: 10.1109/ITEC-AP.2016.7512939
  22. Jovcic, D., & Zhang, L. (2013). LCL DC/DC converter for DC grids. IEEE Transactions on Power Delivery, 28, 2071-2079
  23. Kotra, S., & Mishra, M.K. (2019). Design and stability analysis of DC microgrid with hybrid energy storage system. IEEE Transactions on Sustaiable Energy, 10(3), 1603 – 1612
  24. Kumar, A., & Bhat, A.H. (2022). Role of dual active bridge isolated bidirectional DC-DC converter in a DC microgrid, in Microgrids Modeling, Control, and Applications, Academic Press, 141-155; DOI: 10.1016/B978-0-323-85463-4.00006-X
  25. Kumar, B.M., Kumar, A., Bhat, A.H., & Agarwal, P. (2017). Comparative study of dual active bridge isolated DC to DC converter with single phase shift and dual phase shift control techniques. Recent Developments in Control, Automation & Power Engineering (RDCAPE), Noida, India; DOI: 10.1109/RDCAPE.2017.8358314
  26. Kwak, B., Kim, M., & Kim, J. (2020). Inrush current reduction technology of DAB converter for low-voltage battery systems and DC bus connections in DC microgrids, IET Power Electronics. 13(8), 1528-1536
  27. Li, Z., Wang, Y., Shi, L., Huang, J., Cui, Y., & Lei, W. (2017). Generalized averaging modeling and control strategy for three-phase dual-active-bridge DC-DC converters with three control variables. IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, USA, DOI: 10.1109/APEC.2017.7930829
  28. Liu, T., Yang, X., Chen, W., Xuan, Y., Li, Y., Huang, L., & Hao, X. (2020). High-efficiency control strategy for 10-kV/1-MW solid-state transformer in PV application. 35(11), 11770–11782; DOI: 10.1109/TPEL.2020.2984685
  29. Luo, S., Wu, F., & Wang, G. (2019). Improved TPS control for DAB DC–DC converter to eliminate dual-side flow back currents. IET Power Electronics, 13(1), 32-39; DOI: 10.1049/iet-pel.2019.0562
  30. Menshawy, M., & Massoudb, A. (2021). Development of modular DC-DC converters for low-speed electric vehicles fast chargers. Alexandria Engineering Journal, 1067-1083; DOI: 10.1016/j.aej.2020.10.031
  31. Mueller, J.A., & Kimball, J.W. (2021). Modeling and analysis of DC microgrids as stochastic hybrid systems. IEEE Transactions on Power Electronics, 36(8), 9623–9636; DOI: 10.1109/TPEL.2021.3055456
  32. Mueller, J.A., & Kimball, J.W. (2019). Modeling dual active bridge converters in DC distribution systems. IEEE Transactions on Power Electronics, 34(6), 5867-5879; DOI: 10.1109/TPEL.2018.2867434
  33. Nalamati, C.S., Agrawal, A., & Gupta, R. (2020). Multiple parallel-connected DAB-based solid-state transformer for hybrid DC/AC microgrid system. IET Generation, Transmission & Distribution, 14(25), 6359–6370; DOI: 10.1049/iet-gtd.2020.0748
  34. Paraskevopoulos, P.N. (2017). Modern Control Engineering, CRC Press, United Kingdom
  35. Planas, E., Andreu, J., Garate, J.I. , de Alegria, I.M., & Ibarra, E. (2015). AC and DC technology in microgrids: a review. Renewable and Sustainable Energy Reviews, 43, 726-749
  36. Puukko, J., Messo, T., & Suntio, T. (2018). Power electronic converters: dynamics and control in conventional and renewable energy applications, Wiley, Weinheim, Germany
  37. Qin, H. & Kimball, J.W. (2012). Generalized Average Modeling of Dual Active Bridge DC–DC Converter. IEEE Transactions on Power Electronics, 27(4), 2078-2084, doi: 10.1109/TPEL.2011.2165734
  38. Qiu, G., Li, R., feng, H., Jiang, H., Teng, L., Andrew, J.F., Shao, W.-H., & Xu, H. (2021). A Fluxgate-Based Current Sensor for DC Bias Elimination in a Dual Active Bridge Converter. IEEE Transactions on Power Electronics, 37(3), 3233-3246; doi: 10.1109/TPEL.2021.3114354
  39. Rehman, W., Moeini, A., Oboreh-Snapps, O., Bo, R., & Kimball, J. (2021). Deadband voltage control and power buffering for extreme fast charging station. 2021 IEEE Madrid PowerTech Conference; DOI: 10.1109/PowerTech46648.2021.9494994
  40. Saeed, M.H., Fangzong, W., Kalwar, B.A., & Iqbal, S. (2021). A Review on Microgrids’ Challenges & Perspectives. IEEE ACCESS, 9, 166502-166517; DOI: 10.1109/ACCESS.2021.3135083
  41. Saeed, M.H., Fangzong, W., Salem, S., Khan, Y.A., Kalwar, B.A., & Fars, A. (2021). Two-stage intelligent planning with improved artificial bee colony algorithm for a microgrid by considering the uncertainty of renewable sources. Energy Reports, 7, 8912-8928; DOI: 10.1016/j.egyr.2021.10.123
  42. Sfakianakis, G.E., Everts, J., Huisman, H., & Lomonova, E.A. (2016). Comparative evaluation of bidirectional dual active bridge DC-DC converter variants. IEEE Vehicle Power and Propulsion Conference (VPPC), Hangzhou, China; DOI: 10.1109/VPPC.2016.7791631
  43. Shah, S.S. & Bhattacharya, S. (2018). Control of active component of current in dual active bridge converter. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), 323-330, San Antonio, TX, USA; DOI: 10.1109/APEC.2018.8341030
  44. Sim, J., Lee, J.Y., & Jung, J. (2020). Isolated three-port DC–DC converter employing ESS to obtain voltage balancing capability for bipolar LVDC distribution system. Journal of Power Electronics, 20, 802–810; DOI: 10.1007/s43236-020-00065-z
  45. Shi, Y., & Li, H. (2018). Isolated modular multilevel dc–dc converter with dc fault current control capability based on current-fed dual active bridge for MVDC application. IEEE Transactions on Power Electronics, 33(3), 2145–2161
  46. Stieneker, M., Mortimer, B.J., Hinz, A., Hellmann, A.M., & Donker, R.W. (2018). MVDC distribution grids for electric vehicle fast charging infrastructure. International Power Electronics Conference, 598–606
  47. Sun, J., Sun , Q., Ma, D., & Wang, P.,(2020). Improved dynamic response strategy with dual phase-shift control for dual-active-bridge DC–DC converter. IET Power Electronics, 13(12), 2671-2674; doi: 10.1049/iet-pel.2020.0076
  48. Sun, Y., Gao, Z., Fu, C., Wu, C., & Chen, Z. (2020). A hybrid modular DC solid-state transformer combining high efficiency and control flexibility. IEEE Transactions on Power Electronics, 35(4), 3434 –3449; DOI: 10.1109/TPEL.2019.2935029
  49. Tiwari, S., Hanif, O., & Sarangi, S. (2019). Fractional Order PI Control of Dual Active Bridge Converter Using Generalized Average Modelling. 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 253-259, New Dehli, India; doi: 10.1109/ISAP48318.2019.9065947
  50. Vazquez, N., & Liserre, M. (2019). Peak current control and feed-forward compensation of a DAB converter. IEEE Transactions on Industrial Electronics, 67(10), 8381 –8391; DOI: 10.1002/9781119682035
  51. Verma, A.K., Singh, B., & Shahani, D. Grid to vehicle and vehicle to grid energy transfer using single-phase half bridge boost ac-dc converter and bidirectional dc-dc converter. 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, Odisha, India
  52. Wang, Y., Gao, D., Tannir, D., Dong, N., Peter Fang, G., Dong, W., & Li, P. (2017). Multiharmonic Small-Signal Modeling of Low-Power PWM DC-DC Converters. ACM Transactions on Design Automation of Electronic Systems, 22(4), 1-16; DOI: 10.1145/3057274
  53. Wen, J., Wen, H., & Bu, Q. (2019). An Optimal Control for Dual-Active-Bridge DC-DC Converter in Eliminating Transient DC Bias Current. 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 849-852, Xian, China, doi: 10.1109/PEDG.2019.8807617
  54. Xing, W., Wang, H., Lu, L., Wang, S., & Ouyang, M. (2021). An adaptive droop control for distributed battery energy storage systems in microgrids with DAB converters. International Journal of Electric Power & Energy Systems, 130; DOI: 10.1016/j.ijepes.2021.106944
  55. Xu, Q., Vafamand, N., Chen, L., Dragičević, T., Xie, L., & Blaabjerg, F. (2021). Review on Advanced Control Technologies for Bidirectional DC/DC Converters in DC Microgrids, IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(2), 1205-1221; DOI: 10.1109/JESTPE.2020.2978064
  56. Yang, C., Wang, Y., Wang, C., You, X., & Xu, L. (2021). Transient DC bias current reducing for bidirectional dual-active-bridge DC–DC converter by modifying modulation. IEEE Transactions on Power Electronics, 36(11), DOI: 10.1109/TPEL.2021.3077020
  57. Zhang, K., Shan, Z. & Jatskevich, J. (2017). Large- and small-signal average-value modeling of dual-active-bridge DC–DC converter considering power losses. IEEE Transactions on Power Electronics, 32(3), 1964 – 1974, DOI: 10.1109/TPEL.2016.2555929
  58. Zhao, B., Song, Q., Li, J., Sun, Q., & Liu, W. (2017). Full-process operation, control, and experiments of modular high-frequency-link DC transformer based on dual active bridge for flexible MVDC Distribution: A Practical Tutorial. IEEE Transactions on Power Electronics, 32(9), 6751 – 6766; DOI: 10.1109/TPEL.2016.2626262

Last update:

No citation recorded.

Last update:

No citation recorded.