skip to main content

Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation

1Department of Chemical and Materials Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

2Department of Civil Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

3Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand

4 Research Unit in Bioconversion/Bioseparation for Value-Added Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand

5 Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

View all affiliations
Received: 20 Nov 2021; Revised: 9 Jan 2022; Accepted: 16 Jan 2022; Available online: 25 Jan 2022; Published: 5 May 2022.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Bioethanol from agricultural waste is an attractive way to turn waste into added value that will solve the problem of food competition and waste management. Napier grass is a highly productive and effective lignocellulosic biomass, which is an important substrate of the second-generation biofuels. In addition, several processes are required in the production of ethanol from lignocellulosic materials; thus, co-culture fermentation can shorten the production process. This experimental research utilizes Trichoderma reesei and Saccharomyces cerevisiae co-culture fermentation in the bioethanol production of Napier grass using simultaneous saccharification and fermentation technology. To improve ethanol yield, Napier grass was pretreated with 3% (w/w) sodium hydroxide. An orthogonal experimental design was employed to optimize the Napier grass content, mixed crude co-culture loading, and incubation time for maximum bioethanol production. The results showed that pretreatment increased cellulose contents from 52.85% to 82%. The optimal fermentation condition was 15 g Napier grass, 15 g mixed crude co-culture, and 7 days incubation time, which maximizes the bioethanol yield of 16.90 g/L. Furthermore, the fermentation was upscaled 20-fold, and experiments were performed with and without supplemented sugar using laboratory-scale optimal fermentation conditions. The novelty of this research lies in the use of a mixed crude co-culture of T. reesei and S. cerevisiae to produce bioethanol from Napier grass with the maximum bioethanol concentration of 25.02 and 33.24 g/L under unadded and added sugar conditions and to reduce operational step and capital costs.

Fulltext View|Download
Keywords: Bioethanol; Napier grass; Trichoderma reesei; Saccharomyces cerevisiae

Article Metrics:

  1. Adekunle, A., Orsat, V. & Raghavan, V. (2016). Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels. Renewable and Sustainable Energy Reviews 64, 518-530; doi: 10.1016/j.rser.2016.06.064
  2. Aiyejagbara, M. O., Aderemi, B.O., Ameh, A.O., Ishidi, E., Aiyejagbara, E.F., Ibeneme, U. & Olakunle, M.S. (2016). Production of Bioethanol from Elephant Grass (Pennisetum purpureum) Stem. International Journal of Innovative Mathematics, Statistics & Energy Policies 4(1), 1-9; doi: 10.4314/njb.v32i1.1
  3. Akhtar, N., Goyal, D., & Goyal A. (2017). Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Conversion and Management, 1(141), 133-44; doi: 10.1016/j.enconman.2016.06.081
  4. Alfani, F., Gallifuoco, A., Saporosi, A., Spera, A., & Cantarella, M. (2000). Comparison of SHF and SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial Microbiology and Biotechnology, 25(4), 184-192; doi: 10.1038/sj.jim.7000054
  5. Ariyanti, D., and Hadiyanto, H (2013). Ethanol production from whey by kluyveromyces marxianus in batch fermentation system: Kinetics parameters estimation. Bulletin of Chemical Reaction Engineering and Catalysis, 7(3),179–184; doi: 10.9767/bcrec.7.3.4044.179-184
  6. Azhar, S.H.M., Abdulla, R., Jambo, S.A., Marbawi, H., Gansau, J.A., Faik, A.A.M. & Rodrigues, K.F. (2017). Yeasts in sustainable bioethanol production: A review. Biochemistry and Biophysics Reports 10, 52-61; doi: 10.1016/j.bbrep.2017.03.003
  7. Banka, A., Komolwanich, T. & Wongkasemjit, S. (2015). Potential Thai grasses for bioethanol production. Cellulose 22(1), 9-29;
  8. Burman, N. W., Sheridan, C. M., & Harding, K. G. (2020). Feasibility assessment of the production of bioethanol from lignocellulosic biomass pretreated with acid mine drainage (AMD). Renewable Energy, 157, 1148-1155; doi: 10.1016/j.renene.2020.05.086
  9. Camesasca, L., Ramírez, M.B., Guigou, M., Ferrari, M.D. & Lareo, C. (2015). Evaluation of dilute acid and alkaline pretreatments, enzymatic hydrolysis and fermentation of napiergrass for fuel ethanol production. Biomass and Bioenergy 74, 193-201; doi: 10.1016/j.biombioe.2015.01.017
  10. Cardona, E., Rio, J., Peña, J., Peñuela, M. & Rio, L. (2016). King Grass: A very promising material for the production of second generation ethanol in tropical countries. Biomass and Bioenergy 95, 206-213; doi: 10.1016/j.biombioe.2016.10.008
  11. Chaturvedi, V., & Verma, P. (2013). An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech, 3(5), 415-431. doi: 10.1007/s13205-013-0167-8
  12. Chen, H., Liu, J., Chang, X., Chen, D., Xue, Y., Liu, P., Lin, H. & Han, S. (2017). A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Processing Technology 160, 196-206; doi: 10.1016/j.fuproc.2016.12.00
  13. Cotana, F., Cavalaglio, G., Gelosia, M., Coccia, V., Petrozzi, A., Ingles, D., & Pompili, E. (2015). A comparison between SHF and SSSF processes from cardoon for ethanol production. Industrial Crops and Products, 69, 424-432; doi: 10.1016/j.indcrop.2015.02.064
  14. Dahnum, D., Tasum, S.O., Triwahyuni, E., Nurdin, M. & Abimanyu, H. (2015). Comparison of SHF and SSF Processes Using Enzyme and Dry Yeast for Optimization of Bioethanol Production from Empty Fruit Bunch. Energy Procedia 68, 107-116; doi: 10.1016/j.egypro.2015.03.238
  15. Eliana, C., Jorge, R., Juan, P. & Luis, R. (2014). Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel 118, 41-47; doi: 10.1016/j.fuel.2013.10.055
  16. Ghose, T. K. (1987) Measurement of cellulase activities. Pure and applied Chemistry, 59(2), 257-68; doi: 10.1351/pac198759020257
  17. Gusakov, A.V. (2011). Alternatives to Trichoderma reesei in biofuel production. Trends in Biotechnology 29(9), 419-425; doi: 10.1016/j.tibtech.2011.04.004
  18. He, C.R., Kuo, Y.Y. & Li, S.Y. (2017). Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation. Bioresource Technology 231, 101-108; doi: 10.1016/j.biortech.2017.01.039
  19. Kamarullah, S.H., Mydin, M.M., Omar, W.S.A.W., Harith, S.S., Noor, B.H.M., Alias, N.Z.A., Manap, S. & Mohamad, R. (2015). Surface Morphology and Chemical Composition of Napier Grass Fibers. Malaysian Journal of Analytical Sciences 19(4), 889-895
  20. Kataria, R. & Ghosh, S. (2011). Saccharification of Kans grass using enzyme mixture from Trichoderma reesei for bioethanol production. Bioresource Technology 102(21), 9970-9975; doi: 10.1016/j.biortech.2011.08.023
  21. Kim, J.S., Lee, Y.Y. & Kim, T.H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology 199, 42-48; doi: 10.1016/j.biortech.2015.08.085
  22. Kommula, V.P., Reddy, K.O., Shukla, M., Marwala, T. & Rajulu, A.V. (2013). Physico-chemical, Tensile, and Thermal Characterization of Napier Grass (Native African) Fiber Strands. International Journal of Polymer Analysis and Characterization, 18, 303-314
  23. Kongkeitkajorn, M.B., Sae-Kuay, C. & Reungsang, A. (2020). Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process. Processes, 8(5), 567-685; doi: 10.3390/pr8050567
  24. Kusmiyati, Hadiyanto, H. & Kusumadewi, I. (2016). Bioethanol Production from Iles-Iles (Amorphopallus campanulatus) Flour by Fermentation using Zymomonas mobilis. International Journal of Renewable Energy Development, 5(1), 9-14; doi: 10.14710/ijred.5.1.9-14
  25. Liu, Y.K., Chen, W.C., Huang, Y.C., Chang, Y.K., Chu, I.M., Tsai, S.L. & Wei, H.W. (2017). Production of bioethanol from Napier grass via simultaneous saccharification and co-fermentation in a modified bioreactor. Journal of Bioscience and Bioengineering 124(2): 184-188; doi: 10.1016/j.jbiosc.2017.02.018
  26. Loaces, I., Schein, S. & Noya, F. (2017). Ethanol production by Escherichia coli from Arundo donax biomass under SSF, SHF or CBP process configurations and in situ production of a multifunctional glucanase and xylanase. Bioresource Technology 224: 307-313; doi: 10.1016/j.biortech.2016.10.075
  27. Mafuleka, S. & Kana, E.B.G. (2015). Modelling and optimization of xylose and glucose production from napier grass using hybrid pre-treatment techniques. Biomass and Bioenergy 77, 200-208; doi: 10.1016/j.biombioe.2015.03.031
  28. Menegol, D., Fontana, R.C., Dillon, A.J.P. & Camassola, M. (2016). Second-generation ethanol production from elephant grass at high total solids. Bioresource Technology 211, 280-290; doi: 10.1016/j.biortech.2016.03.098
  29. Miller, G.L. (1959). Use of dinitrosalicylic acid and reagent for determination of reducing sugar. Analytical Chemistry 31, 426-427; doi: 10.1021/ac60147a030
  30. Mohammad, I., Abakr, Y., Kabir, F., Yusuf, S., Alshareef, I., & Chin, S. (2015). Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources, 10(4), 6457-6478. doi: 10.15376/biores.10.4.6457-6478
  31. Rahayu, F., Kawai, Y., Iwasaki, Y., Yoshida, K., Kita, A., Tajima, T., Kato, J., Murakami, K., Hoshino, T. & Nakashimada, Y. (2017). Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. Bioresource Technology 245, 1393-1399; doi: 10.1016/j.biortech.2017.05.146
  32. Reddy, K.O., Maheswari, C,U., Shukla, M. & Muzenda, E. (2014). Preparation, Chemical composition, Characterization, and Properties of Napier Grass Paper Sheets. Separation Science and Technology, 49, 1527-1534; doi: 10.1080/01496395.2014.893358
  33. Restiawaty, E., Gani, K.P., Dewi, A., Arina, L.A., Kurniawati, K.I., Wibisono, Y. & Akhmaloka (2020). Bioethanol Production from Sugarcane Bagasse Using Neurospora intermedia in an Airlift Bioreactor. International Journal of Renewable Energy Development, 9(2), 247-253; doi: 10.14710/ijred.9.2.247-253
  34. Pensri, B., Aggarangsi, P., Chaiyaso, T. & Chandet, N. (2016). Potential of Fermentable Sugar Production from Napier cv. Pakchong1 Grass Residue as a Substrate to Produce Bioethanol. Energy Procedia 89, 428-436; doi: 10.1016/j.egypro.2016.06.287
  35. Prajankate, P. & Siwarasak, P. (2011). Co-culture of Trichoderma reesei RT-P1 with Saccharomyces cerevisiae RT-P2: Morphological Studies. Journal of the Microscopy Society of Thailand 4(2), 75-78
  36. Sanford, G., Oates, L.G., Roley, S., Duncan, D.S., Jackson, R.D., Robertson, G.P. & Thelen, K.D. (2017). Biomass Production a Stronger Driver of Cellulosic Ethanol Yield than Biomass Quality. Agronomy Journal 109(5), 1-12; doi: 10.2134/agronj2016.08.0454
  37. Sawasdee, V. & Pisutpaisal, N. (2014). Feasibility of Biogas Production from Napier Grass. Energy Procedia 61: 1229-1233; doi: 10.1016/j.egypro.2014.11.1064
  38. Scholl, A.L., Menegol, D., Piitarelo, A.P., Fontana, R.C., Filho, A.Z., Ramos, L.P., Dillon, A.J.P. & Camassola, M. (2015). Ethanol production from sugars obtained during enzymatic hydrolysis of elephant grass (Pennisetum purpureum, Schum.) pretreated by steam explosion. Bioresource Technology 192, 228-237; doi: 10.1016/j.biortech.2015.05.065
  39. Sharma, P., Sharma, N. & Sharma, N. (2019) Scale up and optimization of process parameters for high gravity ethanol fermentation from a fresh water algae Rhizoclonium sp. of Trans Himalayas using Taguchi orthogonal array design, kinetics and modeling. Journal of Pharmacognosy and Phytochemistry, 8(1), 1386-98
  40. Sharma, B., Larroche, C., & Dussap, C. G. (2020). Comprehensive assessment of 2G bioethanol production. Bioresource Technology 313, 123630; doi: 10.1016/j.biortech.2020.123630
  41. Siwarasak, P., Pajantagate, P. & Prasertlertrat, K. (2012). Use of Trichoderma reesei RT-P1 crude enzyme powder for ethanol fermentation of sweet sorghum fresh stalks. Bioresource Technology 107, 200-204; doi: 10.1016/j.biortech.2011.12.009
  42. Sudiyani, Y., Triwahyuni, E., Muryanto, Burhani, D., Waluyo, J., Sulaswaty, A. & Abimanyu, H. (2016). Alkaline Pretreatment of Sweet Sorghum Bagasse for Bioethanol Production. International Journal of Renewable Energy Development, 5(2), 113-118; doi: 10.14710/ijred.5.2.113-118
  43. Taherzadeh, M.J. & Karimi, K. (2008). Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review. International Journal of Molecular Sciences 9, 1621-1651; doi: 10.3390/ijms9091621
  44. Tran, D.T., I, Y.P. & Lin, C.W. (2013). Developing co-culture system of dominant cellulolytic Bacillus sp. THLA0409 and dominant ethanolic Klebsiella oxytoca THLC0409 for enhancing ethanol production from lignocellulosic materials. Journal of the Taiwan Institute of Chemical Engineers 44(5), 762-769; doi: 10.1016/j.jtice.2013.01.028
  45. Triantafyllidis, K., Lappas, A. & Stöcker, M. (2013). The Role of Catalysis for the Sustainable Production of Bio-fuels and Bio-chemicals, 1st edn. Elsevier, Amsterdam
  46. Tsai, M.H., Lee, W.C., Kuan, W.C., Sirisansaneeyakul, S. & Savarajara, A. (2018). Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Science & Engineering, 6, 683-692; doi: 10.1002/ese3.243
  47. Williams, M.B. & Reese, D. (1950). Colorimetric determination of ethyl alcohol. Analytical Chemistry 22, 1463-1582; doi: 10.1021/ac60048a025
  48. Wingren, A., Galbe, M., & Zacchi, G. (2003). Techno‐economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnology progress, 19(4), 1109-1117; doi: 10.1021/bp0340180
  49. Wongwatanapaiboon, J., Kangvansaichol, K., Burapatana, V., Inochanon, R., Winayanuwattikun, P., Yongvanich, T. & Chulalaksananukul, W. (2012). The Potential of Cellulosic Ethanol Production from Grasses in Thailand. Journal of Biomedicine and Biotechnology 2012, 1-10; doi: 10.1155/2012/303748
  50. Xu, Q., Himmel, M.E. & Singh, A. (2015). Chapter 11 - Production of Ethanol from Engineered Trichoderma reesei. Direct Microbial Conversion of Biomass to Advanced Biofuels. 197-208; doi: 10.1016/B978-0-444-59592-8.00011-7
  51. Yasuda, M., Nagai, H., Takeo, K., Ishii, Y. & Ohta, K. (2014). Bio-ethanol production through simultaneous saccharification and co-fermentation (SSCF) of a low-moisture anhydrous ammonia (LMAA)-pretreated napiegrass (Pennisetum purpureum Schumach). Springerplus 3(333), 1-8; doi: 10.1186/2193-1801-3-333

Last update:

  1. Optimizing alkaline pretreatment for delignification of paddy straw and sugarcane bagasse to enhance bioethanol production

    J. Tharunkumar, V. K. Arosha, Amit K. Bajhaiya, Suchitra Rakesh. Biomass Conversion and Biorefinery, 2024. doi: 10.1007/s13399-024-05458-9
  2. Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment

    Herliati Rahman, Ayu Nehemia, Hadiatun Puji Astuti. International Journal of Renewable Energy Development, 12 (4), 2023. doi: 10.14710/ijred.2023.52532
  3. Two-stage sulfite steam pre-treatment achieves extraordinary bioethanol titer from simultaneously saccharification and fermentation of softwood whole slurries

    Na Zhong, Richard Chandra, Jack Saddler. Chemical Engineering Journal, 472 , 2023. doi: 10.1016/j.cej.2023.144954
  4. Novel insight on ferric ions addition to mitigate recalcitrant formation during thermal-alkali hydrolysis to enhance biomethanation

    Banafsha Ahmed, Shivi Tyagi, Ali Mohammad Rahmani, A.A. Kazmi, Sunita Varjani, Vinay Kumar Tyagi. Science of The Total Environment, 829 , 2022. doi: 10.1016/j.scitotenv.2022.154621

Last update: 2024-04-12 04:32:53

No citation recorded.