skip to main content

Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF)

1Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta 12220, Indonesia

2Sanitary Engineering Laboratory, Study Program of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir Sutami 36A, Kentingan, Surakarta, Indonesia

3Engineering Management, Industrial and Agroindusty Technology Faculty, Universitas Internasional Semen Indonesia, Kompleks PT. Semen Indonesia (Persero) Tbk, Jl. Veteran, Kb. Dalem, Sidomoro, Kebomas, Gresik 61122, East Java, Indonesia

4 Department of Fundamental and Applied Sciences, Faculty of Science and Information Technology, University Teknologi PETRONAS, Seri Iskandar, 36210, Perak, Malaysia

5 Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia

View all affiliations
Received: 23 Jan 2022; Revised: 15 Feb 2022; Accepted: 13 Mar 2022; Available online: 20 Mar 2022; Published: 5 May 2022.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The generation of polyethylene terephthalate (PET) plastic and garden waste must be recycled to support the circular economy. An alternative way to reduce the plastics waste is to reduce this waste by converting it into energy such as Refused Derived Fuel (RDF) as an alternative for processing waste. Substitution of plastic and garden waste is an opportunity to be analyzed. Hence, This study aimed to investigate the potential for converting material substitution from PET and garden waste into RDF. The RDF characterized test method was carried out by proximate, water content, ash content, and analysis. At the same time, the calorific value. was tested by bomb calorimetry. Substitution of the mixture of plastic and garden waste affects each parameter of RDF pellet quality including water, ash, and caloric value (sig.< 0.05). The increase of plastic waste in pellets consistently increases the calorific value of RDF from 18.94 until 25.04 MJ/kg. The RDF pellet water and ash content also invariably affect the rate of increase in the calorific value of RDF in the multilinearity model (sig.<0.05; R2 is 0.935). The thermal stability of the pellets occurred at a temperature of 5000C decomposition of hemicellulose, cellulose, and lignin in mixed garden waste with plastic in RDF pellets. The decrease in the decomposition of PET into terephthalic acid monomer from the thermal stability of raw materials and waste PET plastic pellets occurs at a temperature of 4500˚C. This potential finding can be used as a basis for consideration in regions or countries that have the generation of garden waste and plastic, especially the type of PET to be used as an environmentally friendly fuel.
Fulltext View|Download
Keywords: Garden waste; polyethylene terephthalate; refused derived fuel; waste to energy; caloric value

Article Metrics:

  1. Ahmed, A., Abu Bakar, M. S., Azad, A. K., Sukri, R. S., & Mahlia, T. M. I. (2018). Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review. Renewable and Sustainable Energy Reviews, 82, 3060–3076. https://doi.org/https://doi.org/10.1016/j.rser.2017.10.032
  2. Alfahdawi, I. H., Osman, S. A., Hamid, R., & AL-Hadithi, A. I. (2019). Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Construction and Building Materials, 225, 358–370. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.07.214
  3. Aryan, Y., Yadav, P., & Samadder, S. R. (2019). Life Cycle Assessment of the existing and proposed plastic waste management options in India: A case study. Journal of Cleaner Production, 211, 1268–1283. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.236
  4. Białowiec, A., Pulka, J., Stępień, P., Manczarski, P., & Gołaszewski, J. (2017). The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel. Waste Management, 70, 91–100. https://doi.org/https://doi.org/10.1016/j.wasman.2017.09.020
  5. Brems, A., Baeyens, J., Vandecasteele, C., & Dewil, R. (2011). Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. Journal of the Air and Waste Management Association, 61(7), 721–731. https://doi.org/10.3155/1047-3289.61.7.721
  6. Cheremisinoff, N. P. (2003). Handbook of solid waste management and waste minimization technologies. In Chemical Engineer (Issue 744). https://doi.org/10.1016/b978-0-7506-7507-9.x5000-1
  7. Damayanti, P., Moersidik, S. S., & Haryanto, J. T. (2021). Waste to Energy in Sunter, Jakarta, Indonesia: Plans and Challenges. IOP Conference Series: Earth and Environmental Science, 940(1), 012033. https://doi.org/10.1088/1755-1315/940/1/012033
  8. Dimitrov, N., Kratofil Krehula, L., Ptiček Siročić, A., & Hrnjak-Murgić, Z. (2013). Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability, 98(5), 972–979. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2013.02.013
  9. Hajinezhad, A., Halimehjani, E. Z., & Tahani, M. (2016). Utilization of refuse-derived fuel (RDF) from urban waste as an alternative fuel for cement factory: A case study. International Journal of Renewable Energy Research, 6(2), 702–714
  10. Haque, M. S. (2019). Sustainable use of plastic brick from waste PET plastic bottle as building block in Rohingya refugee camp: a review. Environmental Science and Pollution Research, 26(36), 36163–36183. https://doi.org/10.1007/s11356-019-06843-y
  11. Hastiawan, I., Ernawati, E., Noviyanti, A. R., Eddy, D. R., & Yuliyati, Y. B. (2018). PEMBUATAN BRIKET DARI LIMBAH BAMBU DENGAN MEMAKAI ADHESIVE PET PLASTIK DI DESA CILAYUNG, JATINANGOR. Dharmakarya: Jurnal Aplikasi Ipteks Untuk Masyarakat, 7(3), 154–156
  12. Huang, Y., Finell, M., Larsson, S., Wang, X., Zhang, J., Wei, R., & Liu, L. (2017). Biofuel pellets made at low moisture content – Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy, 98, 8–14. https://doi.org/https://doi.org/10.1016/j.biombioe.2017.01.002
  13. Hwang, I.-H., Kobayashi, J., & Kawamoto, K. (2014). Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Waste Management, 34(2), 402–410. https://doi.org/https://doi.org/10.1016/j.wasman.2013.10.009
  14. Indonesia, I. S., & Timur, G. J. (2018). Rancang Bangun Solar Dryer Untuk Meningkatkan Kualitas Refuse Derived Fuels (RDF) Sebagai Bahan Bakar Alternatif. Rekayasa Mesin, 9(3), 211–220. https://doi.org/https://doi.org/10.21776/ub.jrm.2018.009.03.8
  15. Kara, M., Günay, E., Tabak, Y., & Yıldız, Ş. (2009). Perspectives for pilot scale study of RDF in Istanbul, Turkey. Waste Management, 29(12), 2976–2982. https://doi.org/https://doi.org/10.1016/j.wasman.2009.07.014
  16. Liu, Y., Wang, M., & Pan, Z. (2012). Catalytic depolymerization of polyethylene terephthalate in hot compressed water. The Journal of Supercritical Fluids, 62, 226–231. https://doi.org/https://doi.org/10.1016/j.supflu.2011.11.001
  17. Ma, Z., Ryberg, M. W., Wang, P., Tang, L., & Chen, W.-Q. (2020). China's Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance. ACS Sustainable Chemistry & Engineering, 8(45), 16861–16868. https://doi.org/10.1021/acssuschemeng.0c05926
  18. Mastellone, M. L. (2020). Technical description and performance evaluation of different packaging plastic waste management's systems in a circular economy perspective. Science of The Total Environment, 718, 137233. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137233
  19. Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J., & Bardow, A. (2020). Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation and Recycling, 162, 105010. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105010
  20. Montejo, C., Costa, C., Ramos, P., & Márquez, M. del C. (2011). Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Applied Thermal Engineering, 31(13), 2135–2140. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2011.03.041
  21. Mustia, D. I., Edy, S., & Nurul, A. (2021). Analysis of waste composition as a source of refuse-derived fuel in Cilacap. IOP Conference Series: Earth and Environmental Science, 896(1), 12063. https://doi.org/10.1088/1755-1315/896/1/012063
  22. Naryono, E., & Soemarno, S. (2013). Pengeringan Sampah Organik Rumah Tangga. Indonesian Green Technology Journal, 2(2), 61–69
  23. Ozyuguran, A., Akturk, A., & Yaman, S. (2018). Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel, 214, 640–646. https://doi.org/https://doi.org/10.1016/j.fuel.2017.10.082
  24. Qonitan, F. D., Suryawan, I. W. K., & Rahman, A. (2021). Overview of Municipal Solid Waste Generation and Energy Utilization Potential in Major Cities of Indonesia. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012064
  25. R Darmawan, S. A. C., Sihombing, A. L., & Cendrawati, D. G. (2021). Potential And Characteristics Of Eichhornia Crassipes Biomass And Municipal Solid Waste As Raw Materials For RDF In Co-Firing Coal Power Plants. IOP Conference Series: Earth and Environmental Science, 926(1), 12009. https://doi.org/10.1088/1755-1315/926/1/012009
  26. Rachman, S. A., Hamdi, M., Djaenuri, A., & Sartika, I. (2020). Model of Public Policy Implementation for Refused Derived Fuel (RDF) Waste Management in Cilacap Regency. International Journal of Science and Society, 2(4 SE-Articles). https://doi.org/10.200609/ijsoc.v2i4.239
  27. Rajmohan, K. V. S., Ramya, C., Raja Viswanathan, M., & Varjani, S. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12, 72–84. https://doi.org/https://doi.org/10.1016/j.coesh.2019.08.006
  28. Rati, Y., Fadjar, G., Sri, K. P., Perdana, P. N., & Musytaqim, N. (2020). Oil Sludge and Biomass Waste Utilization as Densified Refuse-Derived Fuels for Alternative Fuels: Case Study of an Indonesia Cement Plant. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4), 5020001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000511
  29. Saputro, H., Fadlullah, V., Bugis, H., Muslim, R., & Munir, F. A. (2021). Optimization of Refuse Derived Fuel (RDF) of solid waste in palm starch home industry through the variations of binder materials. Journal of Physics: Conference Series, 1808(1), 12021. https://doi.org/10.1088/1742-6596/1808/1/012021
  30. Sarwono, A., Septiariva, I. Y., Qonitan, F. D., Zahra, N. L., Sari, N. K., Fauziah, E. N., Ummatin, K. K., Amoa, Q., Faria, N., Wei, L. J., & Suryawan, I. W. K. (2021). Municipal Solid Waste Treatment for Energy Recovery Through Thermal Waste-To-Energy in Depok City, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85
  31. Shotorban, B., Yashwanth, B. L., Mahalingam, S., & Haring, D. J. (2018). An investigation of pyrolysis and ignition of moist leaf-like fuel subject to convective heating. Combustion and Flame, 190, 25–35. https://doi.org/https://doi.org/10.1016/j.combustflame.2017.11.008
  32. Singh, N., Chawla, D., & Singh, J. (2004). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 86(4), 601–608. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.10.008
  33. Singh, R., Bhatia, A., & Srivastava, M. (2015). Biofuels as Alternate Fuel from Biomass—The Indian Scenario BT - Energy Sustainability Through Green Energy (A. Sharma & S. K. Kar (eds.); pp. 287–313). Springer India. https://doi.org/10.1007/978-81-322-2337-5_12
  34. Sintim, H. Y., Bary, A. I., Hayes, D. G., English, M. E., Schaeffer, S. M., Miles, C. A., Zelenyuk, A., Suski, K., & Flury, M. (2019). Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Science of The Total Environment, 675, 686–693. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.179
  35. Solis, M., & Silveira, S. (2020). Technologies for chemical recycling of household plastics – A technical review and TRL assessment. Waste Management, 105, 128–138. https://doi.org/https://doi.org/10.1016/j.wasman.2020.01.038
  36. Suryawan, I. W. K., Wijaya, I. M. W., Sari, N. K., & Yenis, I. (2021). Potential of Energy Municipal Solid Waste ( MSW ) to Become Refuse Derived Fuel ( RDF ) in Bali Province , Indonesia. Jurnal Bahan Alam Terbarukan, 10(200)
  37. Syguła, E., Świechowski, K., Stępień, P., Koziel, J. A., & Białowiec, A. (2021). The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO2. In Materials (Vol. 14, Issue 1). https://doi.org/10.3390/ma14010049
  38. Wang, L., Chang, Y., Zhang, X., Yang, F., Li, Y., Yang, X., & Dong, S. (2020). Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value. Journal of Cleaner Production, 255, 120317. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120317
  39. Wiyono, A., Saw, L. H., Anggrainy, R., Husen, A. S., Purnawan, Rohendi, D., Gandidi, I. M., Adanta, D., & Pambudi, N. A. (2021). Enhancement of syngas production via co-gasification and renewable densified fuels (RDF) in an open-top downdraft gasifier: Case study of Indonesian waste. Case Studies in Thermal Engineering, 27, 101205. https://doi.org/https://doi.org/10.1016/j.csite.2021.101205
  40. Yang, Z., Xin, C., Mughal, W., Li, X., & He, Y. (2018). High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. Journal of Applied Polymer Science, 135(8), 45805. https://doi.org/https://doi.org/10.1002/app.45805
  41. Yildiz, S., Yaman, C., Demir, G., Ozcan, H. K., Coban, A., Okten, H. E., Sezer, K., & Goren, S. (2013). Characterization of municipal solid waste in Istanbul, Turkey. Environmental Progress & Sustainable Energy, 32(3), 734–739. https://doi.org/https://doi.org/10.1002/ep.11640
  42. Yoshioka, T., Ota, M., & Okuwaki, A. (2003). Conversion of a Used Poly(ethylene terephthalate) Bottle into Oxalic Acid and Terephthalic Acid by Oxygen Oxidation in Alkaline Solutions at Elevated Temperatures. Industrial & Engineering Chemistry Research, 42(4), 675–679. https://doi.org/10.1021/ie010563z
  43. Zhong, Y., Wang, T., Yan, M., Huang, X., & Zhou, X. (2022). A one-step hot pressing molding method of polyacrylonitrile carbon fibers: influence on surface morphology, microstructure and mechanical property. Journal of Materials Science, 57(3), 2277–2291. https://doi.org/10.1007/s10853-021-06772-7
  44. Ahmed, A., Abu Bakar, M. S., Azad, A. K., Sukri, R. S., & Mahlia, T. M. I. (2018). Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review. Renewable and Sustainable Energy Reviews, 82, 3060–3076. https://doi.org/https://doi.org/10.1016/j.rser.2017.10.032
  45. Alfahdawi, I. H., Osman, S. A., Hamid, R., & AL-Hadithi, A. I. (2019). Influence of PET wastes on the environment and high strength concrete properties exposed to high temperatures. Construction and Building Materials, 225, 358–370. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2019.07.214
  46. Aryan, Y., Yadav, P., & Samadder, S. R. (2019). Life Cycle Assessment of the existing and proposed plastic waste management options in India: A case study. Journal of Cleaner Production, 211, 1268–1283. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.236
  47. Białowiec, A., Pulka, J., Stępień, P., Manczarski, P., & Gołaszewski, J. (2017). The RDF/SRF torrefaction: An effect of temperature on characterization of the product – Carbonized Refuse Derived Fuel. Waste Management, 70, 91–100. https://doi.org/https://doi.org/10.1016/j.wasman.2017.09.020
  48. Brems, A., Baeyens, J., Vandecasteele, C., & Dewil, R. (2011). Polymeric cracking of waste polyethylene terephthalate to chemicals and energy. Journal of the Air and Waste Management Association, 61(7), 721–731. https://doi.org/10.3155/1047-3289.61.7.721
  49. Cheremisinoff, N. P. (2003). Handbook of solid waste management and waste minimization technologies. In Chemical Engineer (Issue 744). https://doi.org/10.1016/b978-0-7506-7507-9.x5000-1
  50. Damayanti, P., Moersidik, S. S., & Haryanto, J. T. (2021). Waste to Energy in Sunter, Jakarta, Indonesia: Plans and Challenges. IOP Conference Series: Earth and Environmental Science, 940(1), 012033. https://doi.org/10.1088/1755-1315/940/1/012033
  51. Dimitrov, N., Kratofil Krehula, L., Ptiček Siročić, A., & Hrnjak-Murgić, Z. (2013). Analysis of recycled PET bottles products by pyrolysis-gas chromatography. Polymer Degradation and Stability, 98(5), 972–979. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2013.02.013
  52. Hajinezhad, A., Halimehjani, E. Z., & Tahani, M. (2016). Utilization of refuse-derived fuel (RDF) from urban waste as an alternative fuel for cement factory: A case study. International Journal of Renewable Energy Research, 6(2), 702–714
  53. Haque, M. S. (2019). Sustainable use of plastic brick from waste PET plastic bottle as building block in Rohingya refugee camp: a review. Environmental Science and Pollution Research, 26(36), 36163–36183. https://doi.org/10.1007/s11356-019-06843-y
  54. Hastiawan, I., Ernawati, E., Noviyanti, A. R., Eddy, D. R., & Yuliyati, Y. B. (2018). PEMBUATAN BRIKET DARI LIMBAH BAMBU DENGAN MEMAKAI ADHESIVE PET PLASTIK DI DESA CILAYUNG, JATINANGOR. Dharmakarya: Jurnal Aplikasi Ipteks Untuk Masyarakat, 7(3), 154–156
  55. Huang, Y., Finell, M., Larsson, S., Wang, X., Zhang, J., Wei, R., & Liu, L. (2017). Biofuel pellets made at low moisture content – Influence of water in the binding mechanism of densified biomass. Biomass and Bioenergy, 98, 8–14. https://doi.org/https://doi.org/10.1016/j.biombioe.2017.01.002
  56. Hwang, I.-H., Kobayashi, J., & Kawamoto, K. (2014). Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF. Waste Management, 34(2), 402–410. https://doi.org/https://doi.org/10.1016/j.wasman.2013.10.009
  57. Indonesia, I. S., & Timur, G. J. (2018). Rancang Bangun Solar Dryer Untuk Meningkatkan Kualitas Refuse Derived Fuels (RDF) Sebagai Bahan Bakar Alternatif. Rekayasa Mesin, 9(3), 211–220. https://doi.org/https://doi.org/10.21776/ub.jrm.2018.009.03.8
  58. Kara, M., Günay, E., Tabak, Y., & Yıldız, Ş. (2009). Perspectives for pilot scale study of RDF in Istanbul, Turkey. Waste Management, 29(12), 2976–2982. https://doi.org/https://doi.org/10.1016/j.wasman.2009.07.014
  59. Liu, Y., Wang, M., & Pan, Z. (2012). Catalytic depolymerization of polyethylene terephthalate in hot compressed water. The Journal of Supercritical Fluids, 62, 226–231. https://doi.org/https://doi.org/10.1016/j.supflu.2011.11.001
  60. Ma, Z., Ryberg, M. W., Wang, P., Tang, L., & Chen, W.-Q. (2020). China's Import of Waste PET Bottles Benefited Global Plastic Circularity and Environmental Performance. ACS Sustainable Chemistry & Engineering, 8(45), 16861–16868. https://doi.org/10.1021/acssuschemeng.0c05926
  61. Mastellone, M. L. (2020). Technical description and performance evaluation of different packaging plastic waste management's systems in a circular economy perspective. Science of The Total Environment, 718, 137233. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.137233
  62. Meys, R., Frick, F., Westhues, S., Sternberg, A., Klankermayer, J., & Bardow, A. (2020). Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resources, Conservation and Recycling, 162, 105010. https://doi.org/https://doi.org/10.1016/j.resconrec.2020.105010
  63. Montejo, C., Costa, C., Ramos, P., & Márquez, M. del C. (2011). Analysis and comparison of municipal solid waste and reject fraction as fuels for incineration plants. Applied Thermal Engineering, 31(13), 2135–2140. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2011.03.041
  64. Mustia, D. I., Edy, S., & Nurul, A. (2021). Analysis of waste composition as a source of refuse-derived fuel in Cilacap. IOP Conference Series: Earth and Environmental Science, 896(1), 12063. https://doi.org/10.1088/1755-1315/896/1/012063
  65. Naryono, E., & Soemarno, S. (2013). Pengeringan Sampah Organik Rumah Tangga. Indonesian Green Technology Journal, 2(2), 61–69
  66. Ozyuguran, A., Akturk, A., & Yaman, S. (2018). Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel, 214, 640–646. https://doi.org/https://doi.org/10.1016/j.fuel.2017.10.082
  67. Qonitan, F. D., Suryawan, I. W. K., & Rahman, A. (2021). Overview of Municipal Solid Waste Generation and Energy Utilization Potential in Major Cities of Indonesia. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012064
  68. R Darmawan, S. A. C., Sihombing, A. L., & Cendrawati, D. G. (2021). Potential And Characteristics Of Eichhornia Crassipes Biomass And Municipal Solid Waste As Raw Materials For RDF In Co-Firing Coal Power Plants. IOP Conference Series: Earth and Environmental Science, 926(1), 12009. https://doi.org/10.1088/1755-1315/926/1/012009
  69. Rachman, S. A., Hamdi, M., Djaenuri, A., & Sartika, I. (2020). Model of Public Policy Implementation for Refused Derived Fuel (RDF) Waste Management in Cilacap Regency. International Journal of Science and Society, 2(4 SE-Articles). https://doi.org/10.200609/ijsoc.v2i4.239
  70. Rajmohan, K. V. S., Ramya, C., Raja Viswanathan, M., & Varjani, S. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12, 72–84. https://doi.org/https://doi.org/10.1016/j.coesh.2019.08.006
  71. Rati, Y., Fadjar, G., Sri, K. P., Perdana, P. N., & Musytaqim, N. (2020). Oil Sludge and Biomass Waste Utilization as Densified Refuse-Derived Fuels for Alternative Fuels: Case Study of an Indonesia Cement Plant. Journal of Hazardous, Toxic, and Radioactive Waste, 24(4), 5020001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000511
  72. Saputro, H., Fadlullah, V., Bugis, H., Muslim, R., & Munir, F. A. (2021). Optimization of Refuse Derived Fuel (RDF) of solid waste in palm starch home industry through the variations of binder materials. Journal of Physics: Conference Series, 1808(1), 12021. https://doi.org/10.1088/1742-6596/1808/1/012021
  73. Sarwono, A., Septiariva, I. Y., Qonitan, F. D., Zahra, N. L., Sari, N. K., Fauziah, E. N., Ummatin, K. K., Amoa, Q., Faria, N., Wei, L. J., & Suryawan, I. W. K. (2021). Municipal Solid Waste Treatment for Energy Recovery Through Thermal Waste-To-Energy in Depok City, Indonesia. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85
  74. Shotorban, B., Yashwanth, B. L., Mahalingam, S., & Haring, D. J. (2018). An investigation of pyrolysis and ignition of moist leaf-like fuel subject to convective heating. Combustion and Flame, 190, 25–35. https://doi.org/https://doi.org/10.1016/j.combustflame.2017.11.008
  75. Singh, N., Chawla, D., & Singh, J. (2004). Influence of acetic anhydride on physicochemical, morphological and thermal properties of corn and potato starch. Food Chemistry, 86(4), 601–608. https://doi.org/https://doi.org/10.1016/j.foodchem.2003.10.008
  76. Singh, R., Bhatia, A., & Srivastava, M. (2015). Biofuels as Alternate Fuel from Biomass—The Indian Scenario BT - Energy Sustainability Through Green Energy (A. Sharma & S. K. Kar (eds.); pp. 287–313). Springer India. https://doi.org/10.1007/978-81-322-2337-5_12
  77. Sintim, H. Y., Bary, A. I., Hayes, D. G., English, M. E., Schaeffer, S. M., Miles, C. A., Zelenyuk, A., Suski, K., & Flury, M. (2019). Release of micro- and nanoparticles from biodegradable plastic during in situ composting. Science of The Total Environment, 675, 686–693. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.04.179
  78. Solis, M., & Silveira, S. (2020). Technologies for chemical recycling of household plastics – A technical review and TRL assessment. Waste Management, 105, 128–138. https://doi.org/https://doi.org/10.1016/j.wasman.2020.01.038
  79. Suryawan, I. W. K., Wijaya, I. M. W., Sari, N. K., & Yenis, I. (2021). Potential of Energy Municipal Solid Waste ( MSW ) to Become Refuse Derived Fuel ( RDF ) in Bali Province , Indonesia. Jurnal Bahan Alam Terbarukan, 10(200)
  80. Syguła, E., Świechowski, K., Stępień, P., Koziel, J. A., & Białowiec, A. (2021). The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO2. In Materials (Vol. 14, Issue 1). https://doi.org/10.3390/ma14010049
  81. Wang, L., Chang, Y., Zhang, X., Yang, F., Li, Y., Yang, X., & Dong, S. (2020). Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value. Journal of Cleaner Production, 255, 120317. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.120317
  82. Wiyono, A., Saw, L. H., Anggrainy, R., Husen, A. S., Purnawan, Rohendi, D., Gandidi, I. M., Adanta, D., & Pambudi, N. A. (2021). Enhancement of syngas production via co-gasification and renewable densified fuels (RDF) in an open-top downdraft gasifier: Case study of Indonesian waste. Case Studies in Thermal Engineering, 27, 101205. https://doi.org/https://doi.org/10.1016/j.csite.2021.101205
  83. Yang, Z., Xin, C., Mughal, W., Li, X., & He, Y. (2018). High-melt-elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi-functional epoxide for foaming. Journal of Applied Polymer Science, 135(8), 45805. https://doi.org/https://doi.org/10.1002/app.45805
  84. Yildiz, S., Yaman, C., Demir, G., Ozcan, H. K., Coban, A., Okten, H. E., Sezer, K., & Goren, S. (2013). Characterization of municipal solid waste in Istanbul, Turkey. Environmental Progress & Sustainable Energy, 32(3), 734–739. https://doi.org/https://doi.org/10.1002/ep.11640
  85. Yoshioka, T., Ota, M., & Okuwaki, A. (2003). Conversion of a Used Poly(ethylene terephthalate) Bottle into Oxalic Acid and Terephthalic Acid by Oxygen Oxidation in Alkaline Solutions at Elevated Temperatures. Industrial & Engineering Chemistry Research, 42(4), 675–679. https://doi.org/10.1021/ie010563z
  86. Zhong, Y., Wang, T., Yan, M., Huang, X., & Zhou, X. (2022). A one-step hot pressing molding method of polyacrylonitrile carbon fibers: influence on surface morphology, microstructure and mechanical property. Journal of Materials Science, 57(3), 2277–2291. https://doi.org/10.1007/s10853-021-06772-7

Last update:

No citation recorded.

Last update:

No citation recorded.