- Akhatova, A., Kassymov, A., Kazmaganbetova, M., & Rojas-Solórzano, L. (2015). CFD simulation of the dispersion of exhaust gases in a traffic-loaded street of Astana, Kazakhstan. Journal of Urban and Environmental Engineering, 9(2), 158–166. https://doi.org/10.4090/juee.2015.v9n2.158166
- Al-Dabbagh, M. A., & Yuce, M. I. (2019). Numerical evaluation of helical hydrokinetic turbines with different solidities under different flow conditions. International Journal of Environmental Science and Technology, 16(8), 4001–4012. https://doi.org/10.1007/s13762-018-1987-1
- Al-Dabbagh, Mohammad A., & Yuce, M. I. (2018). Simulation and comparison of helical and straight-bladed hydrokinetic turbines. International Journal of Renewable Energy Research, 8(1), 504–513. https://www.ijrer.org/ijrer/index.php/ijrer/article/view/6697
- Anderson, J., Stelzenmuller, N., Hughes, B., Johnson, C., Taylor, B., Sutanto, L., Mcquaide, E., & Polagye, B. (2011). Design and Manufacture of a Cross-Flow Helical Tidal Turbine. http://depts.washington.edu/pmec/docs/20110615_ME495_report_Micropower.pdf
- Bachant, P., & Wosnik, M. (2011). Experimental investigation of helical cross-flow axis hydrokinetic turbines, including effects of waves and turbulence. Proceedings of the ASME-JSME-KSME 2011 Joint Fluids Engineering Conference, 1–12. https://tethys.pnnl.gov/sites/default/files/publications/Bachant-and-Wosnik-2011.pdf
- Bachant, P., & Wosnik, M. (2015). Performance measurements of cylindrical- and spherical-helical cross-flow marine hydrokinetic turbines, with estimates of exergy efficiency. Renewable Energy, 74, 318–325. https://doi.org/10.1016/j.renene.2014.07.049
- Berhanu, H., Gudeta, D., Haiter Lenin, A., & Karthikeyan, B. (2020). Numerical and experimental investigation of an exhaust air energy recovery Savonius wind turbine for power production. Materials Today: Proceedings, 46(9), 4142–4152. https://doi.org/10.1016/j.matpr.2021.02.675
- Camocardi, M., Marañon, J., Delnero, J., & Colman, J. (2011). Experimental Study of a Naca 4412 Airfoil With Movable Gurney Flap. 47(January), 1–15. https://doi.org/10.2514/6.2011-1309
- Chakka, M. (2016). Gorlov Helical Turbine and the process of Energy Generation Under graduate project report. Shiv Nadar University, India. https://doi.org/10.13140/RG.2.1.2555.8642
- De Oliveira, B. L., & Sundnes, J. (2016). Comparison of tetrahedral and hexahedral meshes for finite element simulation of cardiac electro-mechanics. ECCOMAS Congress 2016 - Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering, 1(June), 164–177. https://doi.org/10.7712/100016.1801.9193
- Driss, Z., Mlayeh, O., Driss, D., Maaloul, M., & Abid, M. S. (2014). Numerical simulation and experimental validation of the turbulent flow around a small incurved Savonius wind rotor. Energy, 74(C), 506–517. https://doi.org/10.1016/j.energy.2014.07.016
- Ghiasi, P., Najafi, G., Ghobadian, B., & Jafari, A. (2021). Analytical and numerical solution for H-type darrieus wind turbine performance at the tip speed ratio of below one. International Journal of Renewable Energy Development, 10(2), 269–281. https://doi.org/10.14710/ijred.2021.33169
- Gorlov, Alexander M. (1998). Helical Turbines for the Gulf Stream: Conceptual Approach to Design of a Large-Scale Floating Power Farm. Mar Technol SNAME N 35 175–182. https://doi.org/10.5957/mt1.1998.35.3.175
- Gorlov, A.M. (1995). The helical turbine: A new idea for low-head hydro. Hydro Review, 14
- Jayaram, V., & Bavanish, B. (2018). Viability study of implementing cross flow helical turbine for micropower generation in India. International Journal of Renewable Energy Research, 8(1), 274–279. https://doi.org/10.20508/ijrer.v8i1.6744.g7301
- Jayaram, V., & Bavanish, B. (2020). A brief review on the Gorlov helical turbine and its possible impact on power generation in India. Materials Today: Proceedings, 37(Part 2), 3343–3351. https://doi.org/10.1016/j.matpr.2020.09.203
- Kirke, B. K. (2011). Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renewable Energy, 36(11), 3013–3022. https://doi.org/10.1016/j.renene.2011.03.036
- Kumar, R., Singal, S. K., Dwivedi, G., & Shukla, A. K. (2020). Development of maintenance cost correlation for high head run of river small hydro power plant. International Journal of Ambient Energy, 0(0), 1–38. https://doi.org/10.1080/01430750.2020.1804447
- Letchumanan, S. M., Tajul Arifin, A. M., Taib, I., Rahim, M. Z., & Nor Salim, N. A. (2021). Simulating the Optimization of Carbon Fiber Reinforced Polymer as a Wrapping Structure on Piping System Using SolidWorks. Journal of Failure Analysis and Prevention, 21(6), 2038–2063. https://doi.org/10.1007/s11668-021-01287-4
- Moffat, R. J. (1988). Describing the uncertainties in experimental results. Experimental Thermal and Fluid Science, 1(1), 3–17. https://doi.org/10.1016/0894-1777(88)90043-X
- Mosbahi, M., Ayadi, A., Chouaibi, Y., Driss, Z., & Tucciarelli, T. (2020). Experimental and numerical investigation of the leading edge sweep angle effect on the performance of a delta blades hydrokinetic turbine. Renewable Energy, 162, 1087–1103. https://doi.org/10.1016/j.renene.2020.08.105
- Mrigua, K., Toumi, A., Zemamou, M., Ouhmmou, B., Lahlou, Y., & Aggour, M. (2020). Cfd investigation of a new elliptical-bladed multistage savonius rotors. International Journal of Renewable Energy Development, 9(3), 383–392. https://doi.org/10.14710/ijred.2020.30286
- Mwaniki, G. R., Okok, M. O., & Oromat, E. (2019). Expanding access to clean energy in developing countries: The role of off-grid mini hydro power projects in Kenya. International Journal of Renewable Energy Research, 9(3), 1571–1577. https://doi.org/10.20508/ijrer.v9i3.9486.g7746
- Pongduang, S., Kayankannavee, C., & Tiaple, Y. (2015). Experimental Investigation of Helical Tidal Turbine Characteristics with Different Twists. In Energy Procedia (Vol. 79). Elsevier B.V. https://doi.org/10.1016/j.egypro.2015.11.511
- Pourrajabian, A., Dehghan, M., & Rahgozar, S. (2021). Genetic algorithms for the design and optimization of horizontal axis wind turbine (HAWT) blades: A continuous approach or a binary one? Sustainable Energy Technologies and Assessments, 44(September 2020), 101022. https://doi.org/10.1016/j.seta.2021.101022
- Prabhu, L., Krishnamoorthi, S., Gokul, P., Sushan, N., Hisham Harshed, P. H., & Jose, A. (2020). Aerodynamics analysis of the car using solidworks flow simulation with rear spoiler using CFD. IOP Conference Series: Materials Science and Engineering, 993(1). https://doi.org/10.1088/1757-899X/993/1/012002
- Price, M. A., & Armstrong, C. G. (1997). Hexahedral mesh generation by medial surface subdivision: Part ii. solids with flat and concave edges. International Journal for Numerical Methods in Engineering, 40(1), 111–136. https://doi.org/10.1002/nme.1620381910
- Putra, Y. S., Noviani, E., & Muhardi, M. (2022). Numerical Study of The Effect of Penstock Dimensions on a Micro-hydro System using a Computational Fluid Dynamics Approach. International Journal of Renewable Energy Development, 11(2), 491–499. https://doi.org/10.14710/ijred.2022.42343
- Ragoth Singh, R., & Nataraj, M. (2014). Design and analysis of pump impeller using SWFS. World Journal of Modelling and Simulation, 10(2), 152–160. http://www.worldacademicunion.com/journal/17467233WJMS/wjmsvol10no02paper08.pdf
- Rezaeiha, A., Kalkman, I., & Blocken, B. (2017). CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. Renewable Energy, 107, 373–385. https://doi.org/10.1016/j.renene.2017.02.006
- Salari, M. S., Boushehri, B. Z., & Boroushaki, M. (2018). Aerodynamic analysis of backward swept in hawt rotor blades using CFD. International Journal of Renewable Energy Development, 7(3), 241–249. https://doi.org/10.14710/ijred.7.3.241-249
- Saryazdi, S. M. E., & Boroushaki, M. (2018). 2D numerical simulation and sensitive analysis of H-darrieus wind turbine. International Journal of Renewable Energy Development, 7(1), 23–34. https://doi.org/10.14710/ijred.7.1.23-24
- Shashikumar, C.M., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021a). Experimental and numerical investigation of novel V-shaped rotor for hydropower utilization. Ocean Engineering, 224, 108689. https://doi.org/10.1016/j.oceaneng.2021.108689
- Shashikumar, C.M., Honnasiddaiah, R., Hindasageri, V., & Madav, V. (2021b). Studies on application of vertical axis hydro turbine for sustainable power generation in irrigation channels with different bed slopes. Renewable energy, 163(2021), 845-857. https://doi.org/10.1016/j.renene.2020.09.015
- Shashikumar, C.M., & Madav, V. (2021). Numerical and experimental investigation of modified V-shaped turbine blades for hydrokinetic energy generation. Renewable Energy, 177, 1170–1197. https://doi.org/10.1016/j.renene.2021.05.086
- Shiono, M., Suzuki, K., & Kiho, S. (2002). Output Characteristics of Darrieus Water Turbine with Helical Blades for Tidal Current Generations. Proceedings of the International Offshore and Polar Engineering Conference, 12, 859–864
- Sobachkin, A., & Dumnov, G. (2013). Numerical Basis of CAD-Embedded CFD. NAFEMS World Congress 2013, February, 1–20. https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded_cfd_whitepaper.pdf
- Supreeth, R., Arokkiaswamy, A., Raikar, N. J., & Prajwal, H. P. (2019). Experimental investigation of performance of a small-scale horizontal axis wind turbine rotor blade. International Journal of Renewable Energy Research, 9(4), 1983–1994. https://www.ijrer.org/ijrer/index.php/ijrer/article/download/9898/pdf
- Talukdar, P. K., Kulkarni, V., & Saha, U. K. (2018). Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation. Renewable Energy, 127, 158–167. https://doi.org/10.1016/j.renene.2018.04.052
- Yagmur, S., Kose, F., & Dogan, S. (2021). A study on performance and flow characteristics of single and double H-type Darrieus turbine for a hydro farm application. Energy Conversion and Management, 245, 114599. https://doi.org/10.1016/j.enconman.2021.114599
- Yun, Z., Kun, G. Y., Xiang, Z. L., Mao, X. T., & Kui, D. H. (2010). Torque model of hydro turbine with inner energy loss characteristics. Science China Technological Sciences, 53(10), 2826–2832. https://doi.org/10.1007/s11431-010-4098-x
- Zanette, J., Imbault, D., & Tourabi, A. (2010). A design methodology for cross flow water turbines. Renewable Energy, 35(5), 997–1009. https://doi.org/10.1016/j.renene.2009.09.014
- Zhang, A., Liu, S., Ma, Y., Hu, C., & Li, Z. (2022). Field tests on model efficiency of twin vertical axis helical hydrokinetic turbines. Energy, 247. https://doi.org/10.1016/j.energy.2022.123376
Last update:
-
Computational Design Analysis of a Hydrokinetic Horizontal Parallel Stream Direct Drive Counter-Rotating Darrieus Turbine System: A Phase One Design Analysis Study
John M. Crooks, Rodward L. Hewlin, Wesley B. Williams.
Energies,
15 (23),
2022.
doi: 10.3390/en15238942
Last update: 2025-04-01 02:39:01
No citation recorded.
Copyright (c) 2022 The Authors. Published by Centre of Biomass and Renewable Energy (CBIORE)

This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.