skip to main content

Methods for Fault Location in High Voltage Power Transmission Lines: A Comparative Analysis

Department of I.T., FPT University - Quy Nhon A.I Campus, Nhon Binh ward, Quy Nhon city, Binh Dinh Province, Viet Nam

Received: 31 May 2022; Revised: 7 Aug 2022; Accepted: 15 Aug 2022; Available online: 22 Aug 2022; Published: 1 Nov 2022.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

Power transmission system stability can be significantly affected due to faults. The fault location accuracy in the transmission lines can make many benefits such as acceleration of the line restoration, reduction in cost, breakdown time, maintenance, and time searching. The methods based on the impedance, including the simple reactance, Takagi, modified Takagi, and double-end, are very much appreciated for locating the fault in transmission lines and especially by estimating the fault distance. This study proposes a comparative case study between these methods. The theoretical basis and the analysis, calculation, and estimation of each method are specifically re-established. To observe the performance of each method, a practical 220kV Quy Nhon - Tuy Hoa transmission line in Vietnam is used to simulate, calculate, evaluate, and compare under the various fault types and resistances. The power system is modeled and simulated in the MATLAB/Simulink software via the time domain. The voltage and current measurements at two ends of the line are used to determine the fault location on the Quy Nhon - Tuy Hoa transmission line. The simulation results show clearly the effectiveness of each fault location method.

Fulltext View|Download
Keywords: Fault location; Transmission line; Power system stability; Global positioning system; Grid faults

Article Metrics:

  1. Ahmed, N., ShetaGabr, M. A., Abdelfattah A. E. (2021). Online tracking of fault location in distribution systems based on PMUs data and iterative support detection. International Journal of Electrical Power & Energy Systems, 128, 106793; doi: 10.1016/j.ijepes.2021.106793
  2. Barati, J., Doroudi, A. (2018). Novel modified impedance-based methods for fault location in the presence of a fault current limiter. Turkish Journal of Electrical Engineering & Computer Sciences, 26(4), 1881-1893; doi: 10.3906/elk-1711-127
  3. Blume, S. W. (2016). Electric power system basics for the nonelectrical professional. John Wiley & Sons
  4. Chafi, Z. S., Afrakhte, H. (2021). Wide area fault location on transmission systems using synchronized/unsynchronized voltage/current measurements. Electric Power Systems Research, 197, 107285; doi: 10.1016/j.epsr.2021.107285
  5. Christos, A. A., Charalampos, G. A., Pavlos S. G., Vassilis C. N. (2022). Fault location algorithms for active distribution systems utilizing two-point synchronized or unsynchronized measurements. Sustainable Energy, Grids and Networks, 32, 100798; doi: 10.1016/j.segan.2022.100798
  6. Das, S., Santoso, S., Gaikwad, A., Patel, M. (2017). Impedance-based fault location in transmission networks: theory and application. IEEE Access, 2, 537-557; doi: 10.1109/ACCESS.2014.2323353
  7. Daza, S. A. (2016). Electric power system fundamentals. Artech House
  8. Deng, Y. J., Wang, C. M., Zhang, S., Han, W. Z. (2022). A fault location algorithm for shunt-compensated lines under dynamic conditions. International Journal of Electrical Power & Energy Systems, 143, 108387; doi: 10.1016/j.ijepes.2022.108387
  9. Fan, R., Liu, Y., Huang, R., Diao, R., Wang, S. (2018). Precise Fault Location on Transmission Lines Using Ensemble Kalman Filter. IEEE Transactions on Power Delivery, 33(6), 3252-3255; doi: 10.1109/TPWRD.2018.2849879
  10. Farhangi, H. (2014). IEEE guide for determining fault location on AC transmission and distribution lines. IEEE Stand. Assoc
  11. Fedorov, A., Petrov, V., Afanasieva, O., Zlobina, I. (2020). Limitations of traveling wave fault location. 2020 Ural Smart Energy Conference, 21-25; doi: 10.1109/USEC50097.2020.9281153
  12. Felipe, V. L., et al. (2022). Single-ended multi-method phasor-based approach for optimized fault location on transmission lines. Electric Power Systems Research, 212, 108361; doi: 10.1016/j.epsr.2022.108361
  13. Gopalakrishnan, A., Kezunovic, M., McKenna, S. M., Hamai, D. M. (2000). Fault location using the distributed parameter transmission line model. IEEE Transactions on Power Delivery, 15(4), 1169-1174; doi: 10.1109/61.891498
  14. Gururajapathy, S. S., Mokhlis, H., Illias, H. A. (2017). Fault location and detection techniques in power distribution systems with distributed generation: A review. Renewable and Sustainable Energy Reviews, 74, 949-958; doi: 10.1016/j.rser.2017.03.021
  15. Han, Z., Li, S., Liu, S., Gao, S. (2020). A reactance-based fault location method for overhead lines of AC electrified railway. IEEE Transactions on Power Delivery, 35(5), 2558-2560; doi: 10.1109/TPWRD.2020.2974162
  16. Jia, Y., Liu, Y., Wang, B., Lu, D., Lin, Y. (2022). Power Network Fault Location with Exact Distributed Parameter Line Model and Sparse Estimation. Electric Power Systems Research, In Press, 108137; doi: 10.1016/j.epsr.2022.108137
  17. Kalita, K., Anand, S., Parida, S. K. (2021). A novel non-iterative fault location algorithm for transmission line with unsynchronized terminal. IEEE Transactions on Power Delivery, 36(3), 1917-1920; doi: 10.1109/TPWRD.2021.3054235
  18. Khoa, N. M., Tung, D. D. (2018). Locating fault on transmission line with static var compensator based on phasor measurement unit. Energies. 11(9), 2380; doi: 10.3390/en11092380
  19. Khoa, N. M., Cuong, M. V., Cuong, H. Q., Hieu, N. T. T. (2022). Performance Comparison of Impedance-Based Fault Location Methods for Transmission Line. International Journal of Electrical and Electronic Engineering & Telecommunications, 11(3), 234-241; doi: 10.18178/ijeetc.11.3.234-241
  20. Khoa, N. M., Van, N. T. H., Hung, L. K., Tuan, D. A. (2022). Investigation of the Impact of Large-Scale Wind Power and Solar Power Plants on a Vietnamese Transmission Network. International Journal of Renewable Energy Development, 11(3), 863-870; doi: 10.14710/ijred.2022.43879
  21. Khoa, N. M., Hieu, N. H., Viet, D. T. (2017). A study of SVC’s impact simulation and analysis for distance protection relay on transmission lines. International Journal of Electrical and Computer Engineering, 7(4), 1686-1695; doi: 10.11591/ijece.v7i4.pp1686-1695
  22. Liang, J., Jing, T., Niu, H., Wang, J. (2020). Two-terminal fault location method of distribution network based on adaptive convolution neural network. IEEE Access, 8, 54035-54043; doi: 10.1109/ACCESS.2020.2980573
  23. Mosavi, M. R., Tabatabaei, A. (2016). Traveling-wave fault location techniques in power system based on wavelet analysis and neural network using GPS timing. Wireless Personal Communications, 86(2), 835-850; doi: 10.1007/s11277-015-2958-1
  24. Namas, T., Džafić, I. (2020). Least square method for impedance based fault location in ungrounded networks. 2020 2nd Global Power, Energy and Communication Conference. 274-278; doi: 10.1109/GPECOM49333.2020.9247886
  25. Phadke, A. G. et al. (1992). Comtrade; a new standard for common format for transient data exchange. IEEE Transactions on Power Delivery, 7(4), 0885-8977; doi:
  26. Reis, R. L. A., Lopes, F. V., Neves, W. L. A., Fernandes Jr, D., Ribeiro, C. M. S., Cunha, G. A. (2021). An improved single-ended correlation-based fault location technique using traveling waves. International Journal of Electrical Power & Energy Systems,132, 107167; doi: 10.1016/j.ijepes.2021.107167
  27. Saad, S. M., Naily, N. E., Mohamed, F. A. (2018). Investigating the effect of DG infeed on the effective cover of distance protection scheme in mixed-MV distribution network. 7(3), 223-231; doi: 10.14710/ijred.7.3.223-231
  28. Saha, M. M., Izykowski, J. J., Rosolowski, E. (2009). Fault location on power networks. Springer Science & Business Media
  29. Sawai, S., Gore, R. N., Naidu, O. D. (2020). Novel traveling wave phase component-based fault location of transmission lines. 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems, 1-5; doi: 10.1109/PEDES49360.2020.9379861
  30. Shu, H., Liu, X., Tian, X. (2021). Single-Ended Fault Location for Hybrid Feeders Based on Characteristic Distribution of Traveling Wave Along a Line. IEEE Transactions on Power Delivery, 36(1), 339-350; doi: 10.1109/TPWRD.2020.2976691
  31. Swetapadma, A., Chakrabarti, S., Abdelaziz, A. Y., (2021). Feasibility study of intelligent fault location estimation methods for double-circuit transmission lines. International Transactions on Electrical Energy Systems, 31(12), e13198; doi: 10.1002/2050-7038.13198
  32. Takagi, T., Yamakoshi, Y., Yamaura, M., Kondow, R., Matsushima, T. (1982). Development of a new type fault locator using the one-terminal voltage and current data. IEEE Transactions on Power Apparatus and Systems, 8, 2892-2898; doi: 10.1109/TPAS.1982.317615
  33. Xu, F., Dong, X. (2014). A novel single-ended traveling wave fault location method based on reflected wave-head of adjacent bus. 12th IET International Conference on Developments in Power System Protection; doi: 10.1049/cp.2014.0048
  34. Zimmerman, K., Novosel, V. (2003). Draft guide for determining fault location on AC transmission and distribution lines, Piscataway. NJ USA
  35. Xie, J., Jin, G., Wang, Y., Nid, X., Liu, X. (2022). New Algorithm for 2-terminal Transmission Line Fault Location Integrating Voltage Phasor Feature and Phase Angle Jump Checking. Electric Power Systems Research, 209, 107971; doi: 10.1016/j.epsr.2022.107971

Last update:

No citation recorded.

Last update: 2023-11-30 00:43:41

No citation recorded.