skip to main content

Analysis of Wake Turbulence for a Savonius Turbine for Malaysia’s Slow-Moving Current Flow

1Mechanical Engineering Program, Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Pauh Putra Main Campus, 02600 Perlis, Malaysia

2Department of Mathematics and Statistics, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 UUM, Sintok, Kedah, Malaysia

Received: 27 Apr 2022; Revised: 5 Jul 2022; Accepted: 18 Jul 2022; Available online: 1 Aug 2022; Published: 1 Nov 2022.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
With Malaysia being surrounded by water bodies, tidal energy could be used for energy extraction. While several turbine designs and technologies have been used for tidal energy extraction, information on the use of vertical-axis tidal turbines (VATTs) for shallow-water applications is scarce. However, implementing horizontal-axis tidal turbines (HATTs) is not feasible due to Malaysian ocean depths. Hence, examining the wake-flow characteristics of VATTs in a shallow water-working environment in Malaysia is essential. The wake turbulence of the Savonius turbine model was compared with that of a hypothetical ‘actuator' cylinder, a VATT representation. Subsequently, the wake turbulences of a Savonius turbine model in static and dynamic simulations were compared to understand the flow distinction. Compared with that exhibited by the hypothetical actuator cylinder of 2.5 m, the hypothetical actuator cylinder of 5 m exhibits greater velocity deceleration. Additionally, the modelled Savonius turbine exhibits significantly more deceleration than that exhibited by the hypothetical actuator cylinder. Finally, the analysis of the static model of the Savonius turbine shows deceleration that is greater than that of the dynamic model.
Fulltext View|Download
Keywords: Shallow depth; marine energy; velocity recovery; cross flow turbines; vertical axis turbine
Funding: the Ministry of Higher Education Malaysia under contract RACER/1/2019/TK07/UNIMAP/1.

Article Metrics:

  1. Abdullah, C., Mad Kaidi, H., Sarip, S., & Shafie, N. (2021). Small scale standalone solar and tidal hybrid power system in isolated area. Renewable Energy Focus, 39(00), 59–71.
  2. Aliferis, A. D., Bracchi, T., & Hearst, R. J. (2019). Performance and wake of a Savonius vertical-axis wind turbine under different incoming conditions. August 2018, 1260–1273.
  3. Alipour, R., Alipour, R., Fardian, F., Koloor, S. S. R., & Petrů, M. (2020). Performance improvement of a new proposed Savonius hydrokinetic turbine: a numerical investigation. Energy Reports, 6, 3051–3066.
  4. Alizadeh, H., Jahangir, M. H., & Ghasempour, R. (2020). CFD-based improvement of Savonius type hydrokinetic turbine using optimized barrier at the low-speed flows. Ocean Engineering, 202(March), 107178.
  5. Anderson, J., Stelzenmuller, N., Hughes, B., Johnson, C., Taylor, B., Sutanto, L., Mcquaide, E., & Polagye, B. (2011). Capstone Project Report : Design and Manufacture of a Cross-Flow Helical Tidal Turbine. In University of Washington
  6. Azrulhisham, E. A., Jamaluddin, Z. Z., Azri, M. A., & Yusoff, S. B. M. (2018). Potential Evaluation of Vertical Axis Hydrokinetic Turbine Implementation in Equatorial River. Journal of Physics: Conference Series, 1072(1).
  7. Badrul Salleh, M., Kamaruddin, N. M., & Mohamed-Kassim, Z. (2019). Savonius hydrokinetic turbines for a sustainable river-based energy extraction: A review of the technology and potential applications in Malaysia. Sustainable Energy Technologies and Assessments, 36(July), 100554.
  8. Bakri, A. (2020). Numerical Assessment of Vertical Axis Marine Current Turbines Performances in Shallow Water : A Case Study for Malaysia. Unversiti Malaysia Perlis
  9. Behrouzi, F., Nakisa, M., Maimun, A., & Ahmed, Y. M. (2016). Renewable energy potential in Malaysia: Hydrokinetic river/marine technology. Renewable and Sustainable Energy Reviews, 62, 1270–1281.
  10. Chong, H. Y., & Lam, W. H. (2013). Ocean renewable energy in Malaysia: The potential of the Straits of Malacca. Renewable and Sustainable Energy Reviews, 23, 169–178.
  11. Coiro, D. P., Marco, A. De, Nicolosi, F., Melone, S., & Montella, F. (2005). Dynamic Behaviour of the Patented Kobold Tidal Current Turbine: Numerical and Experimental Aspects. Acta Polytechnica, 45(3).
  12. Daniel, B., & Nicklas, J. (2013). The Development of a Vertical Axis Tidal Current Turbine. In KTH Industrial Engineering and Management
  13. Davis, B. (2001). Ocean energy technology: The Davis Hydro Turbine. In Refocus (Vol. 2, Issue 2).
  14. Energy Commission of Malaysia. (2020). Malaysia Energy Statistics Handbook
  15. Faez Hassan, H., El-Shafie, A., & Karim, O. A. (2012). Tidal current turbines glance at the past and look into future prospects in Malaysia. Renewable and Sustainable Energy Reviews, 16(8), 5707–5717.
  16. Hoe, B. C. (2019). The Influence of Tidal Turbine In Array Configuration on The Wake Formation For Shallow Water. In School of Mechatronic Engineering. Universiti Malaysia Perlis
  17. Johnson, B. M. C. (2015). Computational Fluid Dynamics (CFD) modelling of renewable energy turbine wake interactions (Issue May). University of Central Lanchashire
  18. Jung, H., Subban, C. V., McTigue, J. D., Martinez, J. J., Copping, A. E., Osorio, J., Liu, J., & Deng, Z. D. (2022). Extracting energy from ocean thermal and salinity gradients to power unmanned underwater vehicles: State of the art, current limitations, and future outlook. Renewable and Sustainable Energy Reviews, 160(March), 112283.
  19. Khan, N. I., Iqbal, T., Hinchey, M., & Masek, V. (2009). Performance of Savonius rotor as a water current turbine. The Journal of Ocean Technology, 4(2), 71–83
  20. Kirke, B. (2019). Hydrokinetic and ultra-low head turbines in rivers: A reality check. Energy for Sustainable Development, 52, 1–10.
  21. Kumar, A., Saini, R. P., Saini, G., & Dwivedi, G. (2020). Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine. Ocean Engineering, 217(October), 108090.
  22. Kuzmin, D., Mierka, O., & Turek, S. (2007). On the implementation of the κ-ε turbulence model in incompressible flow solvers based on a finite element discretisation. International Journal of Computing Science and Mathematics, 1(2–4), 193–206.
  23. Lim, Y. S., & Koh, S. L. (2010). Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia. Renewable Energy.
  24. Magagna, D., & Uihlein, A. (2015). Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy.
  25. Mahmoud, N. H., El-Haroun, A. A., Wahba, E., & Nasef, M. H. (2012). An experimental study on improvement of Savonius rotor performance. Alexandria Engineering Journal, 51(1), 19–25.
  26. Maldar, N. R., Ng, C. Y., & Oguz, E. (2020). A review of the optimization studies for Savonius turbine considering hydrokinetic applications. Energy Conversion and Management, 226(October), 113495.
  27. Maldar, N. R., Ng, C. Y., Patel, M. S., & Oguz, E. (2022). Potential and prospects of hydrokinetic energy in Malaysia: A review. Sustainable Energy Technologies and Assessments, 52(PC), 102265.
  28. Marsh, P., Penesis, I., Nader, J. R., Couzi, C., & Cossu, R. (2021). Assessment of tidal current resources in Clarence Strait, Australia including turbine extraction effects. Renewable Energy, 179, 150–162.
  29. Menet, J. L. (2004). A double-step Savonius rotor for local production of electricity: A design study. Renewable Energy, 29(11), 1843–1862.
  30. Musa, M. A., Roslan, M. F., Ahmad, M. F., Muzathik, A. M., Mustapa, M. A., Fitriadhy, A., Mohd, M. H., & Rahman, M. A. A. (2020). The influence of ramp shape parameters on performance of overtopping breakwater for energy conversion. Journal of Marine Science and Engineering, 8(11), 1–18.
  31. Neill, S. P., Hemmer, M., Robins, P. E., Griffiths, A., Furnish, A., & Angeloudis, A. (2021). Tidal range resource of Australia. Renewable Energy, 170, 683–692.
  32. Priegue, L., & Stoesser, T. (2017). International Journal of Marine Energy The influence of blade roughness on the performance of a vertical axis tidal turbine. International Journal of Marine Energy, 17, 136–146.
  33. Rahman, A., Ibrahim, I., & Rahman, M. T. A. (2019). Assessment of the Malaysian Tidal Stream Energy Resources. IOP Conference Series: Materials Science and Engineering, 670(1).
  34. Roberts, A., Thomas, B., Sewell, P., Khan, Z., Balmain, S., & Gillman, J. (2016). Current tidal power technologies and their suitability for applications in coastal and marine areas. Journal of Ocean Engineering and Marine Energy, 2(2), 227–245.
  35. Roy, S., & Saha, U. K. (2013). Computational study to assess the influence of overlap ratio on static torque characteristics of a vertical axis wind turbine. Procedia Engineering, 51(NUiCONE 2012), 694–702.
  36. Satrio, D., Utama, I. K. A. P., & Mukhtasor. (2016). Vertical Axis Tidal Current Turbine: Advantages and Challenges Review. Proceeding of Ocean, Mechanical and Aerospace -Science and Engineering-, 3(July), 64–71
  37. Suhri, G. E., Abdul Rahman, A., Dass, L., Rajendran, K., & Abdul Rahman, A. (2022). Interactions Between Tidal Turbine Wakes: Numerical Study For Shallow Water Application. Jurnal Teknologi, 84(4), 91–101.
  38. Tan, K. W., Kirke, B., & Anyi, M. (2021). Small-scale hydrokinetic turbines for remote community electrification. Energy for Sustainable Development, 63, 41–50.
  39. Tawi, K., Yaakob, O., & Sunanto, D. T. (2010). Computer simulation studies on the effect overlap ratio for savonius type vertical axis marine current turbine. International Journal of Engineering, Transactions A: Basics, 23(1), 79–88
  40. VanZwieten, J. H., Rauchenstein, L. T., & Lee, L. (2017). An assessment of Florida’s ocean thermal energy conversion (OTEC) resource. Renewable and Sustainable Energy Reviews, 75(November 2016), 683–691.
  41. Yaakob, O. B., Yasser, M., Bin Mazlan, M. N., Jaafar, K. E., & Raja Muda, R. M. (2013). Model testing of an ocean wave energy system for Malaysian sea. World Applied Sciences Journal, 22(5), 667–671.
  42. Yaakob, O., Rashid, T. A., & Mukti, M. (n.d.). Prospects for ocean energy in Malaysia. International Conference on Energy and Environment 2006

Last update:

  1. The Design and Analysis of a Novel Vertical Axis Small Water Turbine Generator for Installation in Drainage Lines

    Werayoot Lahamornchaiyakul, Nat Kasayapanand. International Journal of Renewable Energy Development, 12 (2), 2023. doi: 10.14710/ijred.2023.48388

Last update: 2023-12-01 23:28:58

No citation recorded.