skip to main content

Monitoring of Heat Flux Energy in the Northernmost Part of Sumatra Volcano Using Landsat 8 and Meteorological Data

1Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam–Banda Aceh 23111, Indonesia

2Physics Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia

3Geodetic Engineering Department, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

4 Indonesian Agency for Meteorology, Climatology, and Geophysics, Aceh Besar, Indonesia

View all affiliations
Received: 20 Jun 2022; Revised: 16 Aug 2022; Accepted: 8 Sep 2022; Available online: 27 Sep 2022; Published: 1 Jan 2023.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Geothermal energy, as a part of green and renewable energy, has been widely developed in the world to replace the current conventional fossil energy. Peut Sagoe is an active volcano in the northern part of Sumatra. The volcanic mountain has not been completely explored for geothermal and energy reserves study. This is due to the volcano locates in a high topography and surrounded by dense tropical forest, which makes it challenging to deploy geophysical instruments in the area. The Landsat 8 thermal infrared and meteorological data from 2013 – 2020 were used to estimate the energy resources by calculating the radiative heat flux (RHF) and measuring the energy lost annually through the heat discharge rate (HDR). We also used the normalized differential vegetation index (NDVI) for vegetation analysis, and estimation of its emissivity data. The mono-window algorithm was used to calculate the land surface temperature (LST). The Stefan–Boltzmann equation was utilized to analyze thermal infrared data for RHF, and ambient temperature and relative humidity data were acquired from the Indonesian Meteorological Agency (BMKG) database. The results showed that low vegetation values and high LST of 25°C–35°C were found in crater areas, which indicate the underground thermal activities of the mountain. It demonstrates that the maximum RHF values were 55 W/m2 in 2013 and 37 W/m2 in 2020. The HDR data were calculated by applying 15% of the RHF data, and the amounts of energy lost were 132.5 MWe and 64.5 MWe in 2013 and 2015 respectively. It increased to 186.4 MWe in 2017 and 89 MWe in 2020. Based on these predicted results, we conclude that the combination of thermal infrared imagery of Landsat 8 and meteorological data is an effective approach in estimating geothermal energy potential and energy loss of volcanoes situated in remote areas
Fulltext View|Download
Keywords: Radiative heat flux; Peut Sagoe; heat discharge rate; Landsat 8; geothermal

Article Metrics:

  1. Aufaristama, M., Hoskuldsson, A., Jonsdottir, I., Ulfarsson, M., Thordarson, T., 2018. New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland. Remote Sens. 10, 151. https://doi.org/10.3390/rs10010151
  2. Bennet, M., Doyle, P., Larwood, J., Prosser, C., 1996. Geology on your Doorstep. Geol. Soc. Publ. 270pp
  3. Bogie, I., Kusumah, Y.I., Wisnandary, M.C., 2008. Overview of the Wayang Windu geothermal field, West Java, Indonesia. Geothermics 37, 347–365. https://doi.org/10.1016/J.GEOTHERMICS.2008.03.004
  4. Borović, S., Marković, I., 2015. Utilization and tourism valorisation of geothermal waters in Croatia. Renew. Sustain. Energy Rev. 44, 52–63. https://doi.org/10.1016/J.RSER.2014.12.022
  5. Bradley, K.E., Feng, L., Hill, E.M., Natawidjaja, D.H., Sieh, K., 2017. Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatra. J. Geophys. Res. Solid Earth 122, 572–591. https://doi.org/10.1002/2016JB013549
  6. Campbell, J. and R.H.W., 2011. Introduction to Remote Sensing, Fifth Edit. ed. The Guilford Press, London
  7. Chan, H.P., Chang, C.P., Dao, P.D., 2018. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan. Pure Appl. Geophys. https://doi.org/10.1007/s00024-017-1690-z
  8. Darge, Y.M., Hailu, B.T., Muluneh, A.A., Kidane, T., 2019. Detection of geothermal anomalies using Landsat 8 TIRS data in Tulu Moye geothermal prospect, Main Ethiopian Rift. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2018.08.027
  9. Gemitzi, A., Dalampakis, P., Falalakis, G., 2021. Detecting geothermal anomalies using Landsat 8 thermal infrared remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 96. https://doi.org/10.1016/j.jag.2020.102283
  10. Ghosal, D., Singh, S.C., Chauhan, A.P.S., Hananto, N.D., 2012. New insights on the offshore extension of the Great Sumatran fault, NW Sumatra, from marine geophysical studies. Geochemistry, Geophys. Geosystems. https://doi.org/10.1029/2012GC004122
  11. Hochstein, M.P., Sudarman, S., 2008. History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics 37, 220–266. https://doi.org/10.1016/j.geothermics.2008.01.001
  12. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G.M., Marwan, M., Mahlia, T.M.I., 2019. Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia. Energies 12, 4442. https://doi.org/10.3390/en12234442
  13. Ismail, N., Nadra, U., Yanis, M., 2021. Understanding Volcano Activity Using 2D Simulation Models of MT Data. Proc. - 2nd SEA-STEM Int. Conf. SEA-STEM 2021 129–132. https://doi.org/10.1109/SEA-STEM53614.2021.9668175
  14. Kandari, M., Yulianto, G., Saptadi, S., 2020. Analysis of risk factors nonproductive time on geothermal drilling in Indonesia. AIP Conf. Proc. 2217, 030113. https://doi.org/10.1063/5.0000918
  15. Lashin, A., Al Arifi, N., 2014. Geothermal energy potential of southwestern of Saudi Arabia exploration and possible power generation: A case study at Al Khouba area - Jizan. Renew. Sustain. Energy Rev. https://doi.org/10.1016/j.rser.2013.10.037
  16. Mansoer, W.R., Idral, A., 2015. Geothermal Resources Development in Indonesia: A History, World Geothermal Congress 2015
  17. Marwan, Asrillah, Yanis, M., Furumoto, Y., 2019a. Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. Int. J. GEOMATE 17, 210–216. https://doi.org/10.21660/2019.63.77489
  18. Marwan, Idroes, R., Yanis, M., Idroes, G.M., Syahriza, 2021. A Low-Cost UAV Based Application For Identify and Mapping a Geothermal Feature in Ie Jue Manifestation, Seulawah Volcano, Indonesia. Int. J. GEOMATE 20, 135–142. https://doi.org/10.21660/2021.80.j2044
  19. Marwan, M., Yanis, M., Nugraha, G.S., Zainal, M., Arahman, N., Idroes, R., Dharma, D.B., Saputra, D., Gunawan, P., 2021. Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure. Energies 14, 6091. https://doi.org/10.3390/en14196091
  20. Marwan, Yanis, M., Idroes, R., Ismail, N., 2019b. 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. Int. J. GEOMATE 17. https://doi.org/10.21660/2019.62.11724
  21. Marwan, Yanis, M., Muzakir, Nugraha, G.S., 2020. Application of QR codes as a new communication technology and interactive tourist guide in Jaboi, Sabang, in: IOP Conference Series: Materials Science and Engineering. Institute of Physics Publishing. https://doi.org/10.1088/1757-899X/796/1/012025
  22. Marwan, Yanis, M., Zahratunnisa, Idroes, R., Nugraha, G., Dharma, D.B., Susilo, A., Saputra, D., Suriadi, Paembonan, A.Y., 2022. Geothermal Reservoir Depth of Seulawah Agam Volcano Estimated From 1D Magnetotelluric. J. Appl. Eng. Sci. 1–11. https://doi.org/10.5937/JAES0-36077
  23. Mia, M.B., Bromley, C.J., Fujimitsu, Y., 2013. Monitoring Heat Losses Using Landsat ETM + Thermal Infrared Data: A Case Study in Unzen Geothermal Field, Kyushu, Japan. Pure Appl. Geophys. https://doi.org/10.1007/s00024-013-0662-1
  24. Mia, M.B., Fujimitsu, Y., Nishijima, J., 2019. Exploration of hydrothermal alteration and monitoring of thermal activity using multi-source satellite images: A case study of the recently active Kirishima volcano complex on Kyushu Island, Japan. Geothermics. https://doi.org/10.1016/j.geothermics.2019.01.006
  25. Mia, M.B., Fujimitsu, Y., Nishijima, J., 2017. Thermal Activity Monitoring of an Active Volcano Using Landsat 8/OLI-TIRS Sensor Images: A Case Study at the Aso Volcanic Area in Southwest Japan. Geosci. 7. https://doi.org/10.3390/geosciences7040118
  26. Mia, M.B., Nishijima, J., Fujimitsu, Y., 2014. Exploration and monitoring geothermal activity using Landsat ETM+images. A case study at Aso volcanic area in Japan. J. Volcanol. Geotherm. Res. https://doi.org/10.1016/j.jvolgeores.2014.02.008
  27. Mohan, K., Chaudhary, P., Kumar, G.P., Kothyari, G.C., Choudhary, V., Nagar, M., Patel, P., Gandhi, D., Kushwaha, D., Rastogi, B.K., 2018. Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India). Pure Appl. Geophys. 175, 3569–3589. https://doi.org/10.1007/s00024-018-1883-0
  28. Morifuji, Y., Fujimitsu, Y., Nishijima, J., Mia, M.B., Onizuka, S., 2021. Analysis of Heat Discharge Rate in Geothermal Areas Using Remote Sensing Techniques: Case Study of Unzen Geothermal Area, Japan; Papandayan and Tangkuban Perahu Geothermal Area, Indonesia. Pure Appl. Geophys. 178, 2241–2256. https://doi.org/10.1007/s00024-021-02743-w
  29. Mosher, D.C., Austin, J.A., Fisher, D., Gulick, S.P.S., 2008. Deformation of the northern Sumatra accretionary prism from high-resolution seismic reflection profiles and ROV observations. Mar. Geol. https://doi.org/10.1016/j.margeo.2008.03.014
  30. Muksin, U., Irwandi, Rusydy, I., Muzli, Erbas, K., Marwan, Asrillah, Muzakir, Ismail, N., 2018. Investigation of Aceh Segment and Seulimeum Fault by using seismological data; A preliminary result. J. Phys. Conf. Ser. 1011, 012031. https://doi.org/10.1088/1742-6596/1011/1/012031
  31. Muñoz, G., 2014. Exploring for Geothermal Resources with Electromagnetic Methods. Surv. Geophys. https://doi.org/10.1007/s10712-013-9236-0
  32. Mwaniki, M.W., Moeller, M.S., Schellmann, G., 2015. A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
  33. Natawidjaja, D.H., Triyoso, W., 2007. The Sumatran fault zone—From source to hazard. J. Earthq. Tsunami 1, 21–47
  34. Qin, Q., Zhang, N., Nan, P., Chai, L., 2011. Geothermal area detection using Landsat ETM+ thermal infrared data and its mechanistic analysis-A case study in Tengchong, China. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2011.02.005
  35. Ramírez-González, L.M., Aufaristama, M., Jónsdóttir, I., Höskuldsson, Á., þórðarson, þorvaldur, Proietti, N.M., Kraft, G., McQuilkin, J., 2019. Remote sensing of surface Hydrothermal Alteration, identification of Minerals and Thermal anomalies at Sveifluháls-Krýsuvík high-temperature Geothermal field, SW Iceland. IOP Conf. Ser. Earth Environ. Sci. 254, 012005. https://doi.org/10.1088/1755-1315/254/1/012005
  36. Rizal, M., Ismail, N., Yanis, M., Muzakir, Surbakti, M.S., 2019. The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conf. Ser. Earth Environ. Sci. 364, 012036. https://doi.org/10.1088/1755-1315/364/1/012036
  37. Romaguera, M., Vaughan, R.G., Ettema, J., Izquierdo-Verdiguier, E., Hecker, C.A., van der Meer, F.D., 2018. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data. Remote Sens. Environ. 204, 534–552. https://doi.org/10.1016/j.rse.2017.10.003
  38. Sekertekin, A., Arslan, N., 2019. Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region. Geothermics 78, 243–254. https://doi.org/10.1016/j.geothermics.2018.12.014
  39. Sieh, K., Natawidjaja, D., 2000. Neotectonics of the Sumatran fault, Indonesia. J. Geophys. Res. Solid Earth 105, 28295–28326. https://doi.org/10.1029/2000JB900120
  40. Silvestri, M., Marotta, E., Buongiorno, M.F., Avvisati, G., Belviso, P., Sessa, E.B., Caputo, T., Longo, V., Leo, V. De, Teggi, S., 2020a. Monitoring of surface temperature on parco delle biancane (Italian geothermal area) using optical satellite data, UAV and field campaigns. Remote Sens. 12. https://doi.org/10.3390/rs12122018
  41. Silvestri, M., Romaniello, V., Hook, S., Musacchio, M., Teggi, S., Buongiorno, M.F., 2020b. First comparisons of surface temperature estimations between ECOSTRESS, ASTER and landsat 8 over Italian volcanic and geothermal areas. Remote Sens. 12. https://doi.org/10.3390/RS12010184
  42. Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., Martínez, P., 2008. Land surface emissivity retrieval from different VNIR and TIR sensors, in: IEEE Transactions on Geoscience and Remote Sensing. pp. 316–327. https://doi.org/10.1109/TGRS.2007.904834
  43. Suryadarma, Dwikorianto, T., Zuhro, A.A., Yani, A., 2010. Sustainable development of the Kamojang geothermal field. Geothermics 39, 391–399. https://doi.org/10.1016/J.GEOTHERMICS.2010.09.006
  44. USGS, 2015. Landsat 8 (L8) Data Users Handbook, Earth Resources Observation and Science (EROS) Center
  45. Van der Meer, F., Hecker, C., van Ruitenbeek, F., van der Werff, H., de Wijkerslooth, C., Wechsler, C., 2014. Geologic remote sensing for geothermal exploration: A review. Int. J. Appl. Earth Obs. Geoinf. https://doi.org/10.1016/j.jag.2014.05.007
  46. Watson, F.G.R., Lockwood, R.E., Newman, W.B., Anderson, T.N., Garrott, R.A., 2008. Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux. Remote Sens. Environ. 112, 471–481. https://doi.org/10.1016/J.RSE.2007.05.010
  47. Weng, Q., Lu, D., Schubring, J., 2004. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483. https://doi.org/10.1016/j.rse.2003.11.005
  48. Yanis, M., Abdullah, F., Zaini, N., Ismail, N., 2021a. The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophys. 69, 795–807. https://doi.org/10.1007/s11600-021-00567-9
  49. Yanis, M., Faisal, A., Yenny, A., Muzakir, Z., Abubakar, M., Nazli, I., 2020a. Continuity of Great Sumatran Fault in the Marine Area revealed by 3D Inversion of Gravity Data. J. Teknol. 83, 145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824
  50. Yanis, M., Ismail, N., Abdullah, F., 2022a. Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods. Nat. Resour. Res. 31, 335–352. https://doi.org/10.1007/s11053-021-09966-7
  51. Yanis, M., Marwan, 2019. The potential use of satellite gravity data for oil prospecting in Tanimbar Basin, Eastern Indonesia. IOP Conf. Ser. Earth Environ. Sci. 364, 012032. https://doi.org/10.1088/1755-1315/364/1/012032
  52. Yanis, M., Marwan, Idroes, R., Zaini, N., Paembonan, A.Y., Ananda, R., Ghani, A.A., 2022b. A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity. Acta Geophys. 2022 1–19. https://doi.org/10.1007/S11600-022-00860-1
  53. Yanis, M., Marwan, M., Paembonan, A.Y., Yudhyantoro, Y., Rusydy, I., Idris, S., Asrillah, A., 2021b. Geophysical and Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant Foundation. Indian Geotech. J. https://doi.org/10.1007/s40098-021-00559-y
  54. Yanis, M., Novari, I., Zaini, N., Marwan, Pembonan, A.Y., Nizamuddin, 2020b. OLI and TIRS Sensor Platforms for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province, Indonesia, in: 2020 International Conference on Electrical Engineering and Informatics (ICELTICs). IEEE, pp. 1–6. https://doi.org/10.1109/ICELTICs50595.2020.9315378
  55. Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., Aufaristama, M., 2022. Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics 105, 102499. https://doi.org/10.1016/j.geothermics.2022.102499
  56. Zaini, N., Yanis, M., Marwan, Isa, M., van der Meer, F., 2021. Assessing of land surface temperature at the Seulawah Agam volcano area using the landsat series imagery, in: Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1825/1/012021

Last update:

  1. Vertical electrical sounding for revealing the groundwater resources in the geothermal spring of Jaboi volcano

    Muhammad Yanis, Nasrullah Zaini, Faisal Abdullah, Muhammad Isa, Marwan Marwan, Syafrizal Idris, Andri Yadi Paembonan, Riski Ananda, Muzakir Zainal, Azman Abdul Ghani, Deni Saputra. Acta Geophysica, 72 (3), 2023. doi: 10.1007/s11600-023-01164-8
  2. The simulation of urban development with the consideration of ground deformation threats in Sidoarjo Regency, East Java Province of Indonesia

    Atrida Hadianti, Bondan Galih Dewanto. Remote Sensing Applications: Society and Environment, 32 , 2023. doi: 10.1016/j.rsase.2023.101019
  3. Optimizing the Gravity Data and Geological Observation for Mapping the Local Fault around the Jaboi Volcano

    Muhammad Yanis, Zaini Nasrullah, Muhammad Isa, Ananda Riski, Muzakir Zainal, Andri Yadi Paembonan. 5th International Conference on Science and Technology Applications (ICoSTA), 11 , 2024. doi: 10.4028/p-MezTA6
  4. Analysis DEM and Geological Observation Data for Study of the Potential Landslide National Street for Jantho - Lamno

    Muzakir Zainal, Muhammad Nabil, Didik Sugiyanto, Akmal Muhni, Muhammad Yanis. 5th International Conference on Science and Technology Applications (ICoSTA), 11 , 2024. doi: 10.4028/p-XFbd4h
  5. Study of geothermal and volcanic activity at Mount Awu, the deadliest active volcano in North Sulawesi Province, Indonesia using Optical Satellite Imagery

    Bondan Galih Dewanto, Heryadi Rachmat, Estu Kriswati, Muhammad Yanis, Achmad Fakhrus Shomim, Admiral Musa Julius. Journal of Volcanology and Geothermal Research, 438 , 2023. doi: 10.1016/j.jvolgeores.2023.107811
  6. Assessing the feasibility of gray, blue, and green ammonia productions in Indonesia: A techno-economic and environmental perspective

    Martin Tjahjono, Isabella Stevani, Gracheilla A Siswanto, Arief Adhitya, Iskandar Halim. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.58035

Last update: 2024-11-06 03:49:37

No citation recorded.