skip to main content

Numerical Analysis of Transfer of Heat by Forced Convection in a Wavy Channel

1Department of Mechanical Engineering, Faculty of Engineering, Kufa University, 54002, Najaf, Iraq

2Refrigeration and Air-conditioning Technical Engineering Department, College of Technical Engineering, The Islamic University, Najaf, Iraq

3Najaf Technical College, Al-Furat Al-Awsat Technical University, 540011, Najaf, Iraq

4 Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

View all affiliations
Received: 13 Jul 2022; Revised: 28 Sep 2022; Accepted: 5 Nov 2022; Available online: 20 Nov 2022; Published: 1 Jan 2023.
Editor(s): Md Hasanuzzaman
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Convective heat transfer of laminar forced convection in a wavy channel is studied in this paper. Numerical simulations of the 3D steady flow of Newtonian fluid and heat transfer characteristics are obtained by the finite element method. The effects of the Reynolds number (10 ≤Re≤1000), number of oscillations (0 ≤N≤5) and amplitude of the wall (0.05 ≤A≤0.2) on the heat transfer have been analyzed. The results show that the average Nusselt number is elevated as the Reynolds number is raised, showing high intensity of heat transfer, as a result of the intensified effects of the inertial and zones of recirculation close to the hot wavy wall. The rate of heat transfer increases about 0.28% with the rise of the number of oscillations. In the transfer of heat along a wavy surface, the number of oscillations and the wave amplitude are important factors. With an increment in the number of oscillations, the maximal value of the average velocity is elevated, and its minimal value occurs when the channel walls are straight. The impact of the wall amplitude on the average Nusselt number and dimensionless temperature tends to be stronger compared to the impact of the number of oscillations. An increase of the wall amplitude improves the rate of heat transfer about 0.91% when the Reynolds number is equal 100. In addition, when the Reynolds number is equal 500, the rate of heat transfer grows about 1.1% with the rising of the wall amplitude.
Fulltext View|Download
Keywords: Forced convection; Finite difference method; Heat transfer; Wavy channel; 3D simulation

Article Metrics:

  1. Abd Rahim, A. T., & Hilo, A. K. (2021). Fluid flow and heat transfer over corrugated backward facing step channel. Case Studies in Thermal Engineering, 24, 100862.
  2. Adhikari, R. C., Wood, D. H., & Pahlevani, M. (2020). An experimental and numerical study of forced convection heat transfer from rectangular fins at low Reynolds numbers. International Journal of Heat and Mass Transfer, 163, 120418.
  3. AL-bonsrulah, H. A., Alshukri, M. J., Mikhaeel, L. M., AL-sawaf, N. N., Nesrine, K., Reddy, M. V., & Zaghib, K. (2021). Design and simulation studies of hybrid power systems based on photovoltaic, wind, electrolyzer, and pem fuel cells. Energies, 14(9), 2643.
  4. AL-bonsrulah, H. A., Alshukri, M. J., Alsabery, A. I., & Hashim, I. (2021). Numerical and theoretical study of performance and mechanical behavior of PEM-FC using innovative channel geometrical configurations. Applied Sciences, 11(12), 5597.
  5. Ali, S., Eidan, A., Al-Sahlani, A., Alshukri, M., & Ahmad, A. (2020). The Effect of vibration pulses on the thermal performance of evacuated tube heat pipe solar collector. Journal of Mechanical Engineering Research and Developments, 43, 340
  6. Alsabery, A. I., Hajjar, A., Sheremet, M. A., Ghalambaz, M., & Hashim, I. (2021). Impact of particles tracking model of nanofluid on forced convection heat transfer within a wavy horizontal channel. International Communications in Heat and Mass Transfer, 122, 105176.
  7. Alsabery, A. I., Parvin, S., Ghalambaz, M., Chamkha, A. J., & Hashim, I. (2020). Convection heat transfer in 3D wavy direct absorber solar collector based on two-phase nanofluid approach. Applied Sciences, 10(20), 7265.
  8. Alsabery, A. I., Sidik, N. A. C., Hashim, I., & Muhammad, N. M. (2022). Impacts of two-phase nanofluid approach toward forced convection heat transfer within a 3D wavy horizontal channel. Chinese Journal of Physics, 77, 350-365.
  9. Alshukri, M. J., Eidan, A. A., & Najim, S. I. (2021). The influence of integrated Micro-ZnO and Nano-CuO particles/paraffin wax as a thermal booster on the performance of heat pipe evacuated solar tube collector. Journal of Energy Storage, 37, 102506.
  10. Alshukri, M. J., Hussein, A. K., Eidan, A. A., & Alsabery, A. I. (2022). A review on applications and techniques of improving the performance of heat pipe-solar collector systems. Solar Energy, 236, 417-433.
  11. ALshukri, M. J., Madlool, N. A., & Jabbar, N. A. (2018). Improving heat transfer by employing fin array of various innovative shapes in natural convection. International Journal of Mechanical & Mechatronics Engineering, 18(1), 98-105
  12. Boonloi, A., & Jedsadaratanachai, W. (2015). Turbulent forced convection in a heat exchanger square channel with wavy-ribs vortex generator. Chinese Journal of Chemical Engineering, 23(8), 1256-1265.
  13. Bourouis, M., & Prévost, M. (1994). Etude numérique de la structure de l'écoulement, en régime laminaire, dans une conduite pleine à paroi ondulée. The Chemical Engineering Journal and the Biochemical Engineering Journal, 55(1-2), 15-25.
  14. Brodnianská, Z., & Kotšmíd, S. (2021). Intensification of convective heat transfer in new shaped wavy channel configurations. International Journal of Thermal Sciences, 162, 106794.
  15. Chen, Y. M., & Wang, K. C. (1998). Experimental study on the forced convective flow in a channel with heated blocks in tandem. Experimental Thermal and Fluid Science, 16(4), 286-298.
  16. Durgam, S., Venkateshan, S. P., & Sundararajan, T. (2017). Experimental and numerical investigations on optimal distribution of heat source array under natural and forced convection in a horizontal channel. International Journal of Thermal Sciences, 115, 125-138.
  17. Eidan, A. A., Alshukri, M. J., Al-fahham, M., AlSahlani, A., & Abdulridha, D. M. (2021). Optimizing the performance of the air conditioning system using an innovative heat pipe heat exchanger. Case Studies in Thermal Engineering, 26, 101075.
  18. Errico, O., & Stalio, E. (2014). Direct numerical simulation of turbulent forced convection in a wavy channel at low and order one Prandtl number. International Journal of Thermal Sciences, 86, 374-386.
  19. Feijó, B. C., Lorenzini, G., Isoldi, L. A., Rocha, L. A. O., Goulart, J. N. V., & Dos Santos, E. D. (2018). Constructal design of forced convective flows in channels with two alternated rectangular heated bodies. International Journal of Heat and Mass Transfer, 125, 710-721.
  20. Hajialibabaei, M., & Saghir, M. Z. (2022). A critical review of the straight and wavy microchannel heat sink and the application in lithium-ion battery thermal management. International Journal of Thermofluids, 100153.
  21. Izumi, R., Yamashita, H., Oyakawa, K., & Mori, N. (1983). Fluid Flow and Heat Transfer in Corrugated Wall Channels : 3rd Report, Effects of Bending Angles in the Case Where Channels Are Bent Two Times. Bulletin of JSME, 26(216): 1027–35.
  22. Jabbar, N. A., ALshukri, M. J., Rasheed, W. A., & Hussain, I. Y. (2018). Numerical investigation of new cooling method for clinker flow in parallel with Air flow at different height ratios. International Journal of Mechanical & Mechatronics Engineering, 18(3):1-17.
  23. Jing, D., Song, J., & Sui, Y. I. (2020). Hydraulic and thermal performances of laminar flow in fractal treelike branching microchannel network with wall velocity slip. Fractals, 28(02), 2050022.
  24. Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., & Harting, J. (2012). Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink. Applied Thermal Engineering, 36, 260-268.
  25. Kim, S. M., & Mudawar, I. (2013). Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. International Journal of Heat and Mass Transfer, 56(1-2), 238-250.
  26. Kumar, R., Tiwary, B., & Singh, P. K. (2022). Thermofluidic analysis of Al2O3-water nanofluid cooled branched wavy heat sink. Applied Thermal Engineering, 201, 117787.
  27. Leontini, J. S., Thompson, M. C., & Hourigan, K. (2007). Three-dimensional transition in the wake of a transversely oscillating cylinder. Journal of Fluid Mechanics, 577, 79-104.
  28. Li, X. J., Zhang, J. Z., Tan, X. M., & Wang, Y. (2022). Enhancing forced-convection heat transfer of a channel surface with piezo-fans. International Journal of Mechanical Sciences, 107437.
  29. Lyu, Z., Pourfattah, F., Arani, A. A. A., Asadi, A., & Foong, L. K. (2020). On the thermal performance of a fractal microchannel subjected to water and kerosene carbon nanotube nanofluid. Scientific Reports, 10(1), 1-16.
  30. Mehta, S. K., Pati, S., & Baranyi, L. (2022). Effect of amplitude of walls on thermal and hydrodynamic characteristics of laminar flow through an asymmetric wavy channel. Case Studies in Thermal Engineering, 31, 101796.
  31. Miroshnichenko, I. V., Sheremet, M. A., Pop, I., & Ishak, A. (2017). Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating. International Journal of Mechanical Sciences, 128, 541-549.
  32. Ra, N. (2022). Performance improvement of rectangular microchannel heat sinks using nanofluids and wavy channels. Numerical Heat Transfer, Part A: Applications, 82(10), 619-639.
  33. Nishimura, T., Arakawa, S., Murakami, S., & Kawamura, Y. (1989). Oscillatory viscous flow in symmetric wavy-walled channels. Chemical Engineering Science, 44(10), 2137-2148.
  34. Nishimura, T., Murakami, S., & Kawamura, Y. (1993). Mass transfer in a symmetric sinusoidal wavy-walled channel for oscillatory flow. Chemical Engineering Science, 48(10), 1793-1800.
  35. Rush, T. A., Newell, T. A., & Jacobi, A. M. (1999). An experimental study of flow and heat transfer in sinusoidal wavy passages. International Journal of Heat and Mass Transfer, 42(9), 1541-1553.
  36. Sheikholeslami, M. (2022). Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Solar Energy Materials and Solar Cells, 245, 111856.
  37. Sheikholeslami, M. (2022b). Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Solar Energy Materials and Solar Cells, 243, 111786.
  38. Sheikholeslami, M., & Ebrahimpour, Z. (2022). Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. International Journal of Thermal Sciences, 176, 107505.
  39. Sheikholeslami, M., Said, Z., & Jafaryar, M. (2022). Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renewable Energy, 188, 922-932.
  40. Vasudeviah, M., & Balamurugan, K. (2001). On forced convective heat transfer for a Stokes flow in a wavy channel. International Communications in Heat and Mass Transfer, 28(2), 289-297.
  41. Wang, G. V., & Vanka, S. P. (1995). Convective heat transfer in periodic wavy passages. International Journal of Heat and Mass Transfer, 38(17), 3219-3230.

Last update:

No citation recorded.

Last update: 2024-05-20 03:43:51

No citation recorded.