1Department of Electrical Engineering and Automation, University of Relizane, Relizane, Algeria
2Laboraoire de Simulation, Commande, Analyse et Maintenance des Réseaux Electriques(LSCAMRE), National Polytechnic School of Oran-Maurice Audin, Oran, Algeria
3Laboratoire de Développement Durable de l'Énergie Électrique(LDDEE), University of Science and Technology Mohamed Boudiaf, Oran, Algeria
BibTex Citation Data :
@article{IJRED50270, author = {Abdelkader Mostefa and Karim Belalia and Tayeb Lantri and Houari Boulouiha and Ahmed Allali}, title = {A four-line active shunt filter to enhance the power quality in a microgrid}, journal = {International Journal of Renewable Energy Development}, volume = {12}, number = {3}, year = {2023}, keywords = {Harmonic pollution; non-linear load; active parallel filter; neutrality fault; the pq method; quadruple-wire inverter}, abstract = { In recent years, power quality has become a major concern for electric network managers. Active filtering control schemes ensure improved power quality of the electric network and are able to maintain a desired voltage level at the point of connection, regardless of the current absorbed by nonlinear loads. Harmonics can cause vibration s , equipment distortion, losses and sweatiness in transformers. The main objective of this work is to enhance the quality of energy in a microgrid consisting of 100 kW photovoltaic (PV) system and a 50 kW battery storage connected to nonlinear and unbalanced load s . This paper proposes a the four-arm parallel active filter with a on Proportional-Integral (PI) controller to mitigate the harmonic problems in a microgrid. In addition, an algorithm has been designed to eliminate the neutral current. The identification function is one of the most particular approach for extracting harmonics, it involves providing a current reference imposed by the active filter in order to carry out the filtering operation. Both the performance and the quality of the current harmonic compensation's depend strongly on the strategy adopted for the generating the current reference. In this work, the instantaneous power strategy p-q is chosen outstanding the simplicity and effectiveness in implementation. The proposed control strategy has been tested under simulations and the results have shown good tracking of the references and a significant reduction in the Total Harmonic Distorsion (THD) level under highly unbalanced conditions of the nonlinear loads. The current THD is reduced from 43.64 before filtering to 3.74 % after the application of the four-arm filter, following the recommendations of IEEE-519 standard (THD less than 5%) . }, pages = {488--498} doi = {10.14710/ijred.2023.50270}, url = {https://ejournal.undip.ac.id/index.php/ijred/article/view/50270} }
Refworks Citation Data :
In recent years, power quality has become a major concern for electric network managers. Active filtering control schemes ensure improved power quality of the electric network and are able to maintain a desired voltage level at the point of connection, regardless of the current absorbed by nonlinear loads. Harmonics can cause vibrations, equipment distortion, losses and sweatiness in transformers. The main objective of this work is to enhance the quality of energy in a microgrid consisting of 100 kW photovoltaic (PV) system and a 50 kW battery storage connected to nonlinear and unbalanced loads. This paper proposes a the four-arm parallel active filter with a on Proportional-Integral (PI) controller to mitigate the harmonic problems in a microgrid. In addition, an algorithm has been designed to eliminate the neutral current. The identification function is one of the most particular approach for extracting harmonics, it involves providing a current reference imposed by the active filter in order to carry out the filtering operation. Both the performance and the quality of the current harmonic compensation's depend strongly on the strategy adopted for the generating the current reference. In this work, the instantaneous power strategy p-q is chosen outstanding the simplicity and effectiveness in implementation. The proposed control strategy has been tested under simulations and the results have shown good tracking of the references and a significant reduction in the Total Harmonic Distorsion (THD) level under highly unbalanced conditions of the nonlinear loads. The current THD is reduced from 43.64 before filtering to 3.74% after the application of the four-arm filter, following the recommendations of IEEE-519 standard (THD less than 5%).
Article Metrics:
Last update:
Energy optimization management of microgrid using improved soft actor-critic algorithm
Last update: 2024-09-13 03:13:41
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.