skip to main content

Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment

Department of Chemical Engineering, Faculty of Industrial Technology, University of Jayabaya, Indonesia

Received: 16 Feb 2023; Revised: 14 Apr 2023; Accepted: 20 May 2023; Available online: 25 May 2023; Published: 15 Jul 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The increasing need for alternative fuels to replace fossil fuels has made bioethanol a promising option. Although numerous sources of sugar generation and agricultural wastes can be converted into ethanol, Avocado Seeds (AS) are particularly attractive as raw materials due to their abundance, high carbohydrate content, and lack of interactions with the food chain. Therefore, this study investigated the potential of AS for bioethanol production using several steps, including boiled water delignification pretreatment, catalytic hydrolysis, and fermentation with Saccharomyces cerevisiae. The delignification pretreatment of AS involved soaking in 4% (w/v) sodium hydroxide liquor for 24 hours. Then the mixture was heated to 80°C and stirred slowly for 2.5 hours and after that washing with boiled water at 100 oC for 1.5 hours and screening the mixture. Subsequently, catalytic hydrolysis and fermentation were carried out using two different concentrations of Saccharomyces cerevisiae as yeast, namely 10% (w/v) and 15% (w/v). Qualitative sample analysis was conducted using scanning electron microscopy (SEM) to observe the effect of delignification pretreatment, while FTIR analysis using Thermo Scientific Nicolet iS50 was used to test for glucose functional groups. Quantitative analysis was performed using gas chromatography 7890b mass spectrophotometry 5977A, Agilent DBVRX to determine hydrolysate fermentation. The results revealed that the highest ethanol yield was achieved through fermentation with 15% (w/v) yeast and 40% (v/v) catalyst, resulting in an ethanol yield of 83.755% of the theoretical maximum.
Fulltext View|Download
Keywords: agricultural waste; enzyme; fermentation; hydrolysis
Funding: Universitas Jayabaya

Article Metrics:

  1. Acevedo-García, V., Padilla-Rascón, C., Díaz, M. J., Moya, M., & Castro, E. (2018). Fermentable sugars production from acid-catalysed steam exploded barley straw. Chemical Engineering Transactions, 70, 1939–1944. https://doi.org/10.3303/CET1870324
  2. Ahlgren, E. O., Börjesson Hagberg, M., & Grahn, M. (2017). Transport biofuels in global energy–economy modelling – a review of comprehensive energy systems assessment approaches. In GCB Bioenergy (Vol. 9, Issue 7, pp. 1168–1180). Blackwell Publishing Ltd. https://doi.org/10.1111/gcbb.12431
  3. Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the pretreatment of lignocellulosic biomass for value-added products. In Frontiers in Energy Research, 6(141),1–18). Frontiers Media S.A. https://doi.org/10.3389/fenrg.2018.00141
  4. Chen, D., Cen, K., Zhuang, X., Gan, Z., Zhou, J., Zhang, Y., & Zhang, H. (2022). Insight into biomass pyrolysis mechanism based on cellulose, hemicellulose, and lignin: Evolution of volatiles and kinetics, elucidation of reaction pathways, and characterization of gas, biochar and bio‐oil. Combustion and Flame, 242, 1–17. https://doi.org/10.1016/j.combustflame.2022.112142
  5. Chhouk, K., Wahyudiono, Kanda, H., & Goto, M. (2017). Comparison of conventional and ultrasound assisted supercritical carbon dioxide extraction of curcumin from turmeric (Curcuma longa L.). Engineering Journal, 21(5), 53–65. https://doi.org/10.4186/ej.2017.21.5.53
  6. Deby, A., Rahman, H., & Widyaningrum, A. (2014). Pemanfaatan Sampah Sayuran Sebagai Bahan Baku Bioetanol. Jurnal Konversi, 3(1), 13–18. https://jurnal.umj.ac.id/index.php/konversi/article/view/1097
  7. Dong, C., Wang, Y., Wang, H., Lin, C. S. K., Hsu, H. Y., & Leu, S. Y. (2019). New generation urban biorefinery toward complete utilization of waste derived lignocellulosic biomass for biofuels and value-added products. Energy Procedia, 158, 918–925. https://doi.org/10.1016/j.egypro.2019.01.231
  8. Fadhil, A. B., Ahmed, K. M., & Dheyab, M. M. (2017). Silybum marianum L. seed oil: A novel feedstock for biodiesel production. Arabian Journal of Chemistry, 10. https://doi.org/10.1016/j.arabjc.2012.11.009
  9. Frankowski, J., Wawro, A., Batog, J., Szambelan, K., & Łacka, A. (2022). Bioethanol Production Efficiency from Sorghum Waste Biomass. Energies, 15(9). https://doi.org/10.3390/en15093132
  10. Fülöp, L., & Ecker, J. (2020). An overview of biomass conversion: exploring new opportunities. PeerJ, 8, 1–21. https://doi.org/10.7717/peerj.9586
  11. Ghazanfar, M., Irfan, M., Nadeem, M., Shakir, H. A., Khan, M., Ahmad, I., Saeed, S., Chen, Y., & Chen, L. (2022). Bioethanol Production Optimization from KOH-Pretreated Bombax ceiba Using Saccharomyces cerevisiae through Response Surface Methodology. Fermentation, 8(4), 1–19. https://doi.org/10.3390/fermentation8040148
  12. Godoy P, Mourenza Á, Hernández-Romero S, González-López J, Manzanera M. (2018). Microbial Production of Ethanol From Sludge Derived From an Urban Wastewater Treatment Plant. Front Microbial, 9(1). https://doi.org/10.3389/fmicb.2018.02634
  13. Halimahtussaddiyah, R., Mashuni, & Budiarni. (2017). Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion. Journal of Physics: Conference Series, 846. https://doi.org/10.1088/1742-6596/846/1/012010
  14. Hurtado-Fernández, E., Fernández-Gutiérrez, A., & Carrasco-Pancorbo, A. (2018). Avocado fruit— Persea americana. In Exotic Fruits. Elsevier. https://doi.org/10.1016/B978-0-12-803138-4.00001-0
  15. Ifesan, B. O. T., Olorunsola, B. O., & Ifesan. (2015). Nutritional Composition and Acceptability of Candy from Avocado Seed (Persea americana). International Journal of Agriculture Innovations and Research,3(6), 1631-1634. https://ijair.org/administrator/components/com_jresearch/files/publications/IJAIR_1319_Final.pdf
  16. Jacobus, A. P., Gross, J., Evans, J. H., Ceccato-Antonini, S. R., & Gombert, A. K. (2021). Saccharomyces cerevisiae strains used industrially for bioethanol production. Essays in Biochemistry, 65(2), 147–161. https://doi.org/10.1042/EBC20200160
  17. Janice, D. A., John, A., & Jemmy, F. T. (2018). Morphological characteristics of avocado (Persea americana Mill.) in Ghana. African Journal of Plant Science, 12(4), 88–97. https://doi.org/10.5897/ajps2017.1625
  18. Ji, H., Wang, L., Tao, F., Yao, Z., Li, X., Dong, C., & Pang, Z. (2022). A hydrotrope pretreatment for stabilized lignin extraction and high titer ethanol production. Bioresources and Bioprocessing, 9(1), 1-11. https://doi.org/10.1186/s40643-022-00530-6
  19. Kim, A. (2018). The Influence of Tape Starter (Saccharomyces cerevisiae) Concentration toward Bioethanol Level in the Fermentation Process of Avocado (Persea americana Mill) Seed. J. Akademika Kim, 7(4), 173–178. http://jurnal.untad.ac.id/jurnal/index.php/JAK/article/view/11940
  20. Krajang, M., Malairuang, K., Sukna, J., Rattanapradit, K., & Chamsart, S. (2021). Single-step ethanol production from raw cassava starch using a combination of raw starch hydrolysis and fermentation, scale-up from 5-L laboratory and 200-L pilot plant to 3000-L industrial fermenters. Biotechnology for Biofuels, 14(1). https://doi.org/10.1186/s13068-021-01903-3
  21. Liu, Z. L., & Dien, B. S. (2022). Cellulosic Ethanol Production Using a Dual Functional Novel Yeast. International Journal of Microbiology 2022, 1–12. Hindawi Limited. https://doi.org/10.1155/2022/7853935
  22. Marlina, L., Wahyu Pratama, D., Kimia, T., & TEDC Bandung, P. (2018). Pengambilan Minyak Biji Alpukat Dengan Metode Ekstraksi. TEDC, 12(1), 31–37. https://ejournal.poltektedc.ac.id/index.php/tedc/article/view/128
  23. Mishra, A., Sharma, A. K., Sharma, S., Mathur, A. S., Gupta, R. P., & Tuli, D. K. (2016). Lignocellulosic bioethanol production employing newly isolated inhibitor and thermotolerant Saccharomyces cerevisiae DBTIOC S24 strain in SSF and SHF. RSC Advances, 6(29). https://doi.org/10.1039/C6RA00007J
  24. Mueansichai, T., Rangseesuriyachai, T., Thongchul, N., & Assabumrungrat, S. (2022). Lignocellulosic Bioethanol Production of Napier Grass Using Trichoderma reesei and Saccharomyces cerevisiae Co-Culture Fermentation. International Journal of Renewable Energy Development, 11(2), 423-433. https://doi.org/10.14710/ijred.2022.43740
  25. Muhammad, Rina Ridara, & Masrullita. (2020). Sintesis Bioplastik Dari Pati Biji Alpukat Dengan Bahan Pengisi Kitosan. Jurnal Teknologi Kimia Unimal, 9(2), 1–11. https://doi.org/10.29103/jtku.v9i2.3340
  26. Paredes-Sánchez, B. M., Paredes-Sánchez, J. P., & García-Nieto, P. J. (2021). Evaluation of Implementation of Biomass and Solar Resources by Energy Systems in the Coal-Mining Areas of Spain. Energies, 15(1), 232. https://doi.org/10.3390/en15010232
  27. Pérez, J. A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M. J., & Manzanares, P. (2008). Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel, 87(17–18), 3640–3647. https://doi.org/10.1016/j.fuel.2008.06.009
  28. Rahman, A., Prihantini, N. B., & Nasruddin. (2019). Fatty acid of microalgae as a potential feedstock for biodiesel production in Indonesia. AIP Conference Proceedings, 2062. https://doi.org/10.1063/1.5086606
  29. Rahman, H., Sefaniyah, & Indri, A. (2018). Pemanfaatan limbah kulit pisang sebagai Bahan Baku Pembuatan Bioetanol. Jurnal Teknologi, 6(1), 1–10. https://doi.org/10.31479/jtek.v6i1.1
  30. Raza, M., Inayat, A., & Abu-Jdayil, B. (2021). Crude glycerol as a potential feedstock for future energy via thermochemical conversion processes: A review. Sustainability (Switzerland), 13(22). https://doi.org/10.3390/su132212813
  31. Risyad, A., Permadani, R. L., & Mz, S. (2016). Ekstraksi Minyak dari Biji Alpukat (Persea Americana Mill) Menggunakan Pelatur Heptana. Jurnal Teknik Kimia USU,5(1), 34-39. https://doi.org/10.32734/jtk.v5i1.1522
  32. Ruiz, E., Cara, C., Álvarez-Díaz, Ballesteros, I., Negro, M., & Castro, E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochemistry, 41. https://doi: 10.1016/j.procbio.2005.07.007
  33. Salehi, R., Taghizadeh-Alisaraei, A., Jahanbakhshi, A., & Shahidi, F. (2018). Evaluation and measurement of bioethanol extraction from melon waste (Qassari cultivar). AgricEngInt, 20(3), 127–131. https://cigrjournal.org/index.php/Ejounral/article/view/4821
  34. Scott, F., Quintero, J., Morales, M., Conejeros, R., Cardona, C., & Aroca, G. (2013). Process design and sustainability in the production of bioethanol from lignocellulosic materials. Electronic Journal of Biotechnology ,16(3) https://doi.org/10.2225/vol16-issue3-fulltext-7
  35. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2011). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); Issue Date: April 2008; Revision Date: July 2011 (Version 07-08-2011). http://www.nrel.gov/biomass/analytical_procedures.html
  36. Song, B., Lin, R., Lam, C. H., Wu, H., Tsui, T. H., & Yu, Y. (2021). Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renewable and Sustainable Energy Reviews, 135, https://doi.org/10.1016/j.rser.2020.110370
  37. Subhedar, P. B., & Gogate, P. R. (2013). Intensification of enzymatic hydrolysis of lignocellulose using ultrasound for efficient bioethanol production: A review. Industrial and Engineering Chemistry Research, 52(34), 11816–11828). https://doi.org/10.1021/ie401286z
  38. Sukaryo, & Sri Subekti. (2017). Bioetanol Dari Limbah Biji Alpokat Di Kabupaten Semarang. Jurnal Neo Teknika, 3(1), 29–34
  39. Sultan, I. N., Khienpanya, N., Tareen, A. K., Laemsak, N., Sirisansaneeyakul, S., Vanichsriratana, W., & Parakulsuksatid, P. (2022). Kinetic study of ethanol production from different sizes of two-step pretreated oil palm trunk by fed-batch simultaneous saccharification and fermentation. Agriculture and Natural Resources, 56(2), 287–298. https://doi.org/10.34044/j.anres.2022.56.2.07
  40. Tan, J. S., Phapugrangkul, P., Lee, C. K., Lai, Z.-W., Abu Bakar, M. H., & Murugan, P. (2019). Banana frond juice as novel fermentation substrate for bioethanol production by Saccharomyces cerevisiae. Biocatalysis and Agricultural Biotechnology, 21. https://doi.org/10.1016/j.bcab.2019.101293
  41. Velmurugan, R., & Muthukumar, K. (2011). Utilization of sugarcane bagasse for bioethanol production: Sono-assisted acid hydrolysis approach. Bioresource Technology, 102(14), 7119–7123. https://doi.org/10.1016/j.biortech.2011.04.045
  42. Yu, I. K. M., Hanif, A., Tsang, D. C. W., Shang, J., Su, Z., Song, H., Ok, Y. S., & Poon, C. S. (2020). Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chemical Engineering Journal, 383, 122914. https://doi.org/10.1016/j.cej.2019.122914
  43. Zakaria, M. R., Fujimoto, S., Hirata, S., & Hassan, M. A. (2014). Ball milling pretreatment of oil palm biomass for enhancing enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 173(7), 1778–1789. https://doi.org/10.1007/s12010-014-0964-5
  44. Zhao, X., Cheng, K., & Liu, D. (2009). Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 82(5), 815–827. https://doi.org/10.1007/s00253-009-1883-1

Last update:

No citation recorded.

Last update: 2024-04-19 11:57:45

No citation recorded.