skip to main content

The characteristics and emissions of low-pressure densified torrefied elephant dung fuel briquette

1Asian Development College for Community Economy and Technology (adiCET), Chiang Mai Rajabhat University, Khilek, Mae Rim, Chiang Mai 50180, Thailand

2Biofuel and Bioenergy Technology Research and Development Laboratory (BBT R&D), Department of Mechanical Engineering, Faculty of Engineering, Srinakharinwirot University, 63 Rangsit-Nakhonnayok Rd., Ongkharak, Nakhon-Nayok, 26120, Thailand

3Biomass Pyrolysis Frontier Research Group, Faculty of Engineering, Mahasarakham University, Kamriang, Kantharawichai, Maha Sarakham 44150, Thailand

Received: 29 Apr 2023; Revised: 25 Jun 2023; Accepted: 18 Jul 2023; Available online: 21 Jul 2023; Published: 25 Jul 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Elephant dung is the camp's undigested fiber waste. For more effective waste management, the conversion of dung to torrefied solid and the formation of solid torrefied into fuel briquettes, as well as their properties, were investigated. The dung was improved through torrefaction at 280ºC for 150 sec in a pilot-scale reactor with a feeding rate of 600 g/h. The torrefied elephant dung had 17 MJ/kg of HHV, a solid yield of 79%, and a fixed carbon content of 20%. A mixture of torrefied dung, binder, and water was compressed at 40 bars to a density of 860 kg/m3, or 12 GJ/m3. Their H/C and O/C atomic ratios were in the range of typical biomass. However, due to their moisture content of over 7%, the HHV of the fuel briquettes was below 17 MJ/kg. Moreover, their thermal efficiency was less than 7% due to durability issues, despite having a great fuel ratio and thermal stability. The combustion of these briquettes resulted in less than 850 ppm of CO. To improve the combustibility of this solid biofuel, it is recommended to develop a production process and a suitable stove specifically for these briquettes.
Fulltext View|Download
Keywords: elephant dung; torrefaction; torrefied elephant dung; fuel briquette; undigested fiber waste
Funding: Plant Genetic Conservation Project Under The Royal Initiative of Her Royal Highness Princess Maha Chakri Sirindthrn - Chiang Mai Rajabhat University (RSPG-CMRU), Thailand under contract Grant number 24/64].

Article Metrics:

  1. Abeysinghe, N., Jetsrisuparb, K., Karunarathna, K.H.T., Chandana, E.P.S., Suwanree, S., Kasemsiri, P., Chindaprasirt, P., & Knijnenburg, J.T.N. (2022). Synthesis and phosphate adsorption performance of elephant dung biochar modified with magnesium and iron. J Met Mater Mine, 32(1), 124-133. https://doi.org/10.55713/jmmm.v32i1.1243
  2. Adu-Poku, K.A., Appiah, D., Asosega, K.A., Derkyi, N.S.A., Uba, F., Kumi, E.N., Akowuah, E., Akolgo, G.A., & Gyamfi, D. (2022). Characterization of fuel and mechanical properties of charred agricultural wastes: Experimental and statistical studies. Energy Rep, 8, 4319-4331. https://doi.org/10.1016/j.egyr.2022.03.015
  3. Announcement of Ministry of Natural Resources and Environment. Subject: Setting emission standard for polluted air from industrial factory (in Thai). (2006, 18 May). Gazette No. 123. http://www.ratchakitcha.soc.go.th/DATA/PDF/2549/00189175.PDF [Accessed 15 January 2023]
  4. Announcement of the National Environment Board No. 10 (B.E. 2538) issued under the Enhancement and Conservation of National Environmental Quality Act B.E. 2535. Subject: Determination of general atmospheric air quality standards (in Thai). (1995, May 25). Gazette No. 112. http://www.ratchakitcha.soc.go.th/DATA/PDF/2538/D/042/89.PDF [Accessed 15 January 2023]
  5. Announcement of the National Environment Board No. 21 (B.E. 2544) issued under the Enhancement and Conservation of National Environmental Quality Act B.E. 2535. Subject: Sulfur dioxide concentration standardization in the general atmosphere for 1 hour (in Thai). (2001, April 30). Gazette No. 118. http://www.ratchakitcha.soc.go.th/DATA/PDF/2544/E/039/38.PDF [Accessed 15 January 2023]
  6. Aransiola, E.F., Oyewusi, T.F., Osunbitan, J.A., & Ogunjimi, L.A.O. (2019). Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Rep, 5, 909-918. https://doi.org/10.1016/j.egyr.2019.07. 011
  7. Bello, R.S., Olorunnisola, A.O., Omoniyi, T.E., & Onilude, M.A. (2021), Effects of binder concentrations and soaking time on combustion characteristics of briquettes produced from fermented Gmelina Arborea (Roxb) sawdust and used print paper. Bioenergy Studies, 2(1), 31-34. http://doi.org/10.51606/bes.2022.9
  8. Chukwuneke, J.L., Umeji, A.C., Sinebe, J.E., & Fakiyesi, O.B. (2020). Optimization of composition of selected biomass for briquette production. Univers J Mech Eng, 8(4), 227-236. https://www.doi.org/10.13189/ujme.2020.080408
  9. Deshannavar, U.B., Hegde, P.G., Dhalayat, Z., Patil, V., & Gavas, S. (2018). Production and characterization of agro-based briquettes and estimation of calorific value by regression analysis: An energy application. Materials Science for Energy Technologies, 1(2), 175-181. https://doi.org/10.1016/j.mset.2018.07.003
  10. de Souza, E.C., Gomes, J.P.S., Pimenta, A.S., de Azevedo, T.K.B., Pereira, A.K.S., Gomes, R.M., Brito, J.O., & Dias Júnior, A.F. (2022). Briquette production as a sustainable alternative for waste management in the tannin extraction industry. Environ Sci Pollut Res, 1-13. https://doi.org/10.1007/s11356-022-23490-y
  11. Egbosiuba, T.C. (2022). Biochar and bio-oil fuel properties from nickel nanoparticles assisted pyrolysis of cassava peel. Heliyon, 8(8), e10114. https://doi.org/10.1016/j.heliyon.2022.e10114
  12. Essom Co., LTD. (2014). Heating value of hydrogen and fuels. https://chemeng.queensu.ca/courses/CHEE332/files/ethanol_heating-values.pdf [Accessed 16 December 2022]
  13. Fuad, M.A.H.M., Razali, M.M., Izal, Z.N.M., Faizal, H.M., Ahmad, N., Rahman, M.R.A., & Rahman, M.M. (2020). Torrefaction of briquettes made of palm kernel shell with mixture of starch and water as binder. J Adv Res Fluid Mech Therm Sci, 70(2), 21-36. www.akademiabaru.com/arfmts.html
  14. Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., & Liu, H. (2020). Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel. 272, 117632. https://doi.org/10.1016/j.fuel.2020.117632
  15. Hwangdee, P., Charee, S., Kheowkrai, W., Junsiri, C., & Laloon, K. (2022). Application of the simplex-centroid mixture design to biomass charcoal powder formulation ratio for biomass charcoal briquettes. Sustainability, 14(7), 3940. https://doi.org/10.3390/su14073940
  16. Ibitoye, S.E., Mahamood, R.M., Jen, T.C., & Akinlabi, E.T. (2022). Combustion, physical, and mechanical characterization of composites fuel briquettes from carbonized banana stalk and corncob. Int J Renew En Dev, 11(2), 435-447. https://doi.org/10.14710/ijred.2022.41290
  17. Inegbedion, F., & Erameh, A.A. (2023). Estimation of combustion properties of briquettes produced from palm fruit shell. Int J Eng Technol, 8(1), 8-12. https://dergipark.org.tr/en/download/article-file/2270347
  18. Ivashchuk, O.S., Atamanyuk, V.M., Chyzhovych, R.A., Kiiaieva, S.S., Duleba, V.P., Sobechko, I.B. (2022). Research of solid fuel briquettes obtaining from brewer’s spent grain. J Chem Technol, 30(2), 216-221. http://doi.org/10.15421/jchemtech.v30i2.256749
  19. Jenkins, B., Baxter, L.L., Miles Jr, T.R., & Miles, T.R. (1998). Combustion properties of biomass. Fuel Process Technol, 54(1-3), 17-46. https://doi.org/10.1016/S0378-3820(97)00059-3
  20. Jiao, W., Tabil, L.G., Xin, M., Song, Y., Chi, B., Wu, L., Chen, T., Meng, J., & Bai, X. (2020). Optimization of process variables for briquetting of biochar from corn stover. Bioresources, 15(3), 6811-6825. https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_15_3_6811_Jiao_Optimization_Process_Variables_Briquetting
  21. Kebede, T., Berhe, D.T., & Zergaw, Y. (2022). Combustion characteristics of briquette fuel produced from biomass residues and binding materials. J Energy. 2022. https://doi.org/ 10.1155/2022/4222205
  22. Kofman, P.D. (2016). Review of worldwide standards for solid biofuels, COFORD: Processing/Products, 39, 1-12. https://www.bioenergy.org.nz/documents/resource/Reports/CLWEnvironmentalPlannersLtd120114.pdf
  23. Kole, A.T., Zeru, B.A., Bekele, E.A., & Ramayya, A.V. (2022). Design, development, and performance evaluation of husk biomass cook stove at high altitude condition. IJTF, 100242. https://doi.org/10.1016/j.ijft.2022. 100242
  24. Kumar, V.K., Mahendiran, R., Subramanian, P., Karthikeyan, S., & Surendrakumar, A. (2022). Optimization of inoculum to substrate ratio for enhanced methane yield from leather fleshings in a batch study. J Indian Chem Soc, 99(3), 100384. https://doi.org/10.1016/j.jics.2022.100384
  25. Mainkaew, A., & Jansri, S.N. (2020). Suitable process for producing the elephant dung green fuel briquette (in Thai). J-REC, 3(3), 52-58. http://reca.or.th/wpcontent/uploads/2021/01/J-REC%E2%80%8B_Vol3_2563_07.pdf
  26. Mainkaew, A., Pattiya, A., & Jansri, S.N. (2023). Optimization of elephant dung green fuel briquette production using a low-pressure densification technique and its characterizations, and emissions. Bioresour Technol Rep, 21, 101328. https://doi.org/10.1016/j.biteb. 2022.101328
  27. Mandal, S., Kumar, G.P., Bhattacharya, T.K., Tanna, H.R., & Jena, P.C. (2019). Briquetting of pine needles (Pinus roxburgii) and their physical, handling and combustion properties. Waste Biomass Valor, 10(8), 2415-2424. https://doi.org/10.1007/s12649-018-0239-4
  28. Mathews, A.E., & Thadathil S.V. (2011, August), Material and Energy Recovery from Elephant Dung. In Kerala Environment Congress (p. 244). http://cedindia.org/wp-content/uploads/2013/08/KEC-2011_Proceedings.pdf#page=254
  29. Mohd-Faizal, A.N., Mohd-Shaid, M.S.H., & Ahmad-Zaini, M.A. (2022). Solid fuel briquette from biomass: recent trends. OUAC, 33(2), 150-155. https://doi.org/10.2478/auoc-2022-0022
  30. Nikiema, J., Asamoah, B., Egblewogbe, M.N., Akomea-Agyin, J., Cofie, O.O., Hughes, A.F., Gebreyesus, G., Asiedu, K.Z., & Njenga, M. (2022). Impact of material composition and food waste decomposition on characteristics of fuel briquettes. RCR Advances, 15, 200095. https://doi.org/10.1016/j.rcradv.2022.200095
  31. Nobre, C., Vilarinho, C., Alves, O., Mendes, B., & Gonçalves, M. (2019). Upgrading of refuse derived fuel through torrefaction and carbonization: Evaluation of RDF char fuel properties. Energy, 181, 66-76. https://doi.org/10.1016/j.energy.2019.05.105
  32. Nurhayati, A.Y., Naufal, A.Z.N., & Hariadi, Y.C. (2022). Energy yield of the carbonized plant leaf, petiole and branch biomass briquettes for sustainable production of future fuels. CERiMRE, 5(1). https://doi.org/10.19184/cerimre.v5i1.31509
  33. Onukak, I.E., Mohammed-Dabo, I.A., Ameh, A.O., Okoduwa, S.I., & Fasanya, O.O. (2017). Production and characterization of biomass briquettes from tannery solid waste. Recycling, 2(4), 17-33. https://doi.org/10.3390/recycling2040017
  34. Otieno, A.O., Home, P.G., Raude, J.M., Murunga, S.I., & Gachanja, A. (2022). Heating and emission characteristics from combustion of charcoal and co-combustion of charcoal with faecal char-sawdust char briquettes in a ceramic cook stove. Heliyon, 8(8), e10272. https://doi.org/10.1016/j.heliyon.2022.e10272
  35. Ranaraja, D.M.C.O., Miyuranga, K.A.V., Weerasekara, N.A., & Arachchige, U.S.P.R. (2022). Palm oil sludge as a binding agent for briquette production. Int J Eng Sci, 6(9), 39-42. http://ijses.com/
  36. Ramírez-Ramírez, M.A., Carrillo-Parra, A., Ruíz-Aquino, F., Hernández-Solís, J.J., Pintor-Ibarra, L.F., González-Ortega, N., Orihuela-Equihua, R., Carrillo-Ávila, N., & Rutiaga-Quiñones, J.G. (2022). Evaluation of selected physical and thermal properties of briquette hardwood biomass biofuel. Bioenergy Res, 1-8. https://doi.org/10.1007/s12155-022-10391-8
  37. Sandhage‐Hofmann, A., Linstädter, A., Kindermann, L., Angombe, S., & Amelung, W. (2021). Conservation with elevated elephant densities sequesters carbon in soils despite losses of woody biomass. Glob Change Biol, 27(19), 4601-4614. https://doi.org/10.1111/gcb.15779
  38. Samomssa, I., Nono, Y.J., Cârâc, G., Gurău, G., Dinică, M.R., & Kamga, R. (2020). Optimization of fuel briquette production from cassava peels, plantain peels and corn cobs. J Mater Cycles Waste Manag, 1-13. https://doi.org/10.1007/s10163-021-01260-1
  39. Saripan, K., Mamimin, C., Imai, T., Sittijunda, S., & Reungsang, A. (2022). q-PCR Methodology for Monitoring the Thermophilic Hydrogen Producers Enriched from Elephant Dung. Fermentation, 8(10), 506. https://doi.org/10.3390/fermentation8100506
  40. Sonsupap, S., & Pattiya, A. (2019). Improvement of sugarcane leaves property by torrefaction in a continuous flow reactor (in Thai). SEJ, 14(1), 106-115. https://ph02.tcithaijo.org/index.php/sej/article/download/151320/1529 29/720904
  41. Stępień, P., Świechowski, K., Hnat, M., Kugler, S., Stegenta-Dąbrowska, S., Koziel, J.A., Manczarski, P., & Białowiec, A. (2019). Waste to carbon: biocoal from elephant dung as new cooking fuel. Energies, 12(22), 4344. https://doi.org/10.3390/en12224344
  42. Thai Industrial Standards Institute. (2004). 238/2547 Charcoal bar (in Thai). Thai Community Product Standard, Bangkok, Thailand. https://tcps.tisi.go.th/pub/tcps238_47.pdf. [Accessed 15 January 2023]
  43. Vanleeuwe, H., & Probert, J. (2014). Decay rate of elephant dung in Conkouati-Douli national park, Republic of Congo. Pachyderm, 55, 89-91. https://pachydermjournal.org/index.php/pachy derm/article/download/357/343
  44. Vershinina, K., Dorokhov, V., Romanov, D., & Strizhak, P. (2022). Ignition, combustion, and mechanical properties of briquettes from coal slime and oil waste, biomass, peat and starch. Waste Biomass Valor, 1-15. https://doi.org/10.1007/s12649-022-01883-x
  45. Vitithumakhun, N., Manatrinon, S., Supachocksahakul, W., & Charoenphan, P. (2018). Genetic diversity of the domestic elephant populations in north and northeast of Thailand (in Thai). VESTSU, 5(2), 32 – 45. https://ph01.tcithaijo.org/index.php/VESTSU/article/view/124827
  46. Wahyuni, H., Aladin, A., Kalla, R., Nouman, M., Ardimas, A., &Chowdhury, M.S. (2022). Utilization of Industrial Flour Waste as Biobriquette Adhesive: Application on Pyrolysis Biobriquette Sawdust Red Teak Wood, IJHES, 1(2), 54-69. https://www.journal.foundae.com/ index.php/ijhes
  47. Zhang, B., Shen, Z., Sun, J., He, K., Zou, H., Zhang, Q., Li, J., Xu, H., Ho, K.F., & Cao, J. (2022). County-level of particle and gases emission inventory for animal dung burning in the Qinghai–Tibetan Plateau. China J Clean Prod, 367, 133051. https://doi.org/10.1016/j.jclepro. 2022.133051

Last update:

No citation recorded.

Last update: 2024-12-27 09:52:56

No citation recorded.