skip to main content

Computational prediction of green fuels from crude palm oil in fluid catalytic cracking riser

1Research Center for Energy Conversion and Conservation, National Research and Innovation Agency, South Tangerang, Indonesia

2Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia

3Department of Chemistry, Pharmaceutical Sciences Programs, Faculty of Medicine, Sultan Agung islamic of University, Semarang, Indonesia

Received: 3 May 2023; Revised: 4 Aug 2023; Accepted: 16 Aug 2023; Available online: 23 Aug 2023; Published: 1 Sep 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Fluid catalytic cracking could convert crude palm oil into valuable green fuels to substitute fossil fuels. This study aimed to predict the phenomenon and green fuels yield in the industrial fluid catalytic cracking riser using computational fluid dynamics. A three-dimensional transient simulation using the Eulerian-Lagrangian with the multiphase particle-in-cell is to investigate reactive gas-particle hydrodynamics and the four-lump kinetic network model with the rare earth-Y catalyst for crude palm oil cracking behaviors. The study results show that the fluid and catalyst velocity profile increase in the middle of the riser reactor because the cracking reaction process that produces OLP and Gas products has a lighter molecular weight. The endothermic reaction causes the temperature profile to decrease because the heat of the reaction comes from the catalyst. This analysis shows that the simulation accurately predicts green fuel products from crude palm oil. As a result, the crude palm oil conversion, organic liquid product yield, and Gas yield correspond to 70 wt%, 28.8 wt%, and 27.5 wt%, respectively. Compared to the experimental study, the computational prediction of yield products showed good agreement and determined the optimal riser dimension. The methodology and results are guidelines for optimizing the FCC riser process using CPO.
Fulltext View|Download
Keywords: CFD; CPO; Gas-particle; Green fuels; Riser; Rare earth-Y catalyst

Article Metrics:

  1. Akermann, K., Renze, P., & Schröder, W. (2022). Large-eddy simulation for solid particle transport and deposition in a helically rib-roughened pipe using an Euler-Lagrange approach. Chemical Engineering Science, 253, 117557. https://doi.org/10.1016/j.ces.2022.117557
  2. Akhavan, A., & Blaser, P. (2021). CFD Modeling and Liquid Vaporization: Industrial FCC Riser Feed Injection Application. AIChE Annual Meeting, Conference Proceedings, 2021-Novem, 2023
  3. Ali, H., Rohani, S., & Corriou, J. P. (1997). Modelling and control of a riser type fluid catalytic cracking (FCC) unit. Chemical Engineering Research and Design, 75(4), 401–412. https://doi.org/10.1205/026387697523868
  4. Andrews, M. J., & O’Rourke, P. J. (1996). The multiphase particle-in-cell (MP-PIC) method for dense particulate flows. International Journal of Multiphase Flow, 22(2), 379–402. https://doi.org/10.1016/0301-9322(95)00072-0
  5. Behjat, Y., Shahhosseini, S., & Marvast, M. A. (2011). CFD analysis of hydrodynamic, heat transfer and reaction of three phase riser reactor. Chemical Engineering Research and Design, 89(7), 978–989. https://doi.org/10.1016/j.cherd.2010.10.018
  6. Bhatia, S., Leng, C. T., & Tamunaidu, P. (2007). Modeling and simulation of transport riser reactor for catalytic cracking of palm oil for the production of biofuels. Energy and Fuels, 21(6), 3076–3083. https://doi.org/10.1021/ef070186o
  7. Boache, P. J. (1994). Perspective: A method for uniform reporting of grid refinement studies. Journal of Fluids Engineering, Transactions of the ASME, 116(3), 405–413. https://doi.org/10.1115/1.2910291
  8. Cabrera-Jiménez, R., Mateo-Sanz, J. M., Gavaldà, J., Jiménez, L., & Pozo, C. (2022). Comparing biofuels through the lens of sustainability: A data envelopment analysis approach. Applied Energy, 307, 118201. https://doi.org/10.1016/j.apenergy.2021.118201
  9. Chang, J., Wang, X., Liu, W., Wang, L., & Meng, F. (2020). CFD modeling of hydrodynamics and kinetic reactions in a heavy oil riser reactor: Influence of downward feed injection scheme. Powder Technology, 361, 136–144. https://doi.org/10.1016/j.powtec.2019.10.010
  10. Chen, S., Fan, Y., Kang, H., Lu, B., Tian, Y., Xie, G., Wang, W., & Lu, C. (2021). Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection. Chemical Engineering Science, 242, 116740. https://doi.org/10.1016/j.ces.2021.116740
  11. Chen, Y., Wang, W., Wang, Z., Hou, K., Ouyang, F., & Li, D. (2020). A 12-lump kinetic model for heavy oil fluid catalytic cracking for cleaning gasoline and enhancing light olefins yield. Petroleum Science and Technology, 38(19), 912–921. https://doi.org/10.1080/10916466.2020.1796701
  12. Derouin, C., Nevicato, D., Forissier, M., Wild, G., & Bernard, J.-R. (1997). Hydrodynamics of Riser Units and Their Impact on FCC Operation. Industrial & Engineering Chemistry Research, 36(11), 4504–4515. https://doi.org/10.1021/ie970432r
  13. Dewanti, A. T., Rasyid, R., & Kalla, R. (2022). Effect of HCl/γ-Al2O3 and HCl/Ni/γ-Al2O3 Catalyst on The Cracking of Palm Oil. Jurnal Kimia Valensi, 8(2), 190–198. https://doi.org/10.15408/jkv.v8i2.25774
  14. Du, Y., Chen, X., Li, S., Berrouk, A. S., Ren, W., & Yang, C. (2022). Revisiting a large-scale FCC riser reactor with a particle-scale model. Chemical Engineering Science, 249, 117300. https://doi.org/10.1016/j.ces.2021.117300
  15. Dymala, T., Wytrwat, T., & Heinrich, S. (2021). MP-PIC simulation of circulating fluidized beds using an EMMS based drag model for Geldart B particles. Particuology, 59, 76–90. https://doi.org/10.1016/j.partic.2021.07.002
  16. Grahn, M., Malmgren, E., Korberg, A. D., Taljegard, M., Anderson, J. E., Brynolf, S., Hansson, J., Skov, I. R., & Wallington, T. J. (2022). Review of electrofuel feasibility - Cost and environmental impact. Progress in Energy, 4(3). https://doi.org/10.1088/2516-1083/ac7937
  17. Gu, C., Zhao, H., Xu, B., Yang, J., Zhang, J., Du, M., Liu, Y., Tikhankin, D., & Yuan, Z. (2023). CFD-DEM simulation of distribution and agglomeration characteristics of bendable chain-like biomass particles in a fluidized bed reactor. Fuel, 340, 127570. https://doi.org/10.1016/j.fuel.2023.127570
  18. Hasanudin, H., Rachmat, A., Said, M., & Wijaya, K. (2020). Kinetic model of crude palm oil hydrocracking over ni/mo zro2 –pillared bentonite catalyst. Periodica Polytechnica Chemical Engineering, 64(2), 238–247. https://doi.org/10.3311/PPch.14765
  19. Horio, M., Kai, T., Tsuji, T., & Hatano, H. (2023). Fluidization centennial and the decades of research and development in Japan. Powder Technology, 415, 118093. https://doi.org/10.1016/j.powtec.2022.118093
  20. Istadi, I., Riyanto, T., Buchori, L., Anggoro, D. D., Pakpahan, A. W. S., & Pakpahan, A. J. (2021). Biofuels production from catalytic cracking of palm oil using modified hy zeolite catalysts over a continuous fixed bed catalytic reactor. International Journal of Renewable Energy Development, 10(1), 149–156. https://doi.org/10.14710/ijred.2021.33281
  21. Koyunoğlu, C., Gündüz, F., Karaca, H., Çınar, T., & Soyhan, G. G. (2023). Developing an adaptive catalyst for an FCC reactor using a CFD RSM, CFD DPM, and CFD DDPM–EM approach. Fuel, 334, 126550. https://doi.org/10.1016/j.fuel.2022.126550
  22. Miao, P., Zhu, X., Guo, Y., Miao, J., Yu, M., & Li, C. (2021). Combined mild hydrocracking and fluid catalytic cracking process for efficient conversion of light cycle oil into high-quality gasoline. Fuel, 292, 120364. https://doi.org/10.1016/j.fuel.2021.120364
  23. Onlamnao, K., Phromphithak, S., & Tippayawong, N. (2020). Generating organic liquid products from catalytic cracking of used cooking oil over mechanically mixed catalysts. International Journal of Renewable Energy Development, 9(2), 159–166. https://doi.org/10.14710/ijred.9.2.159-166
  24. Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: a review. Environmental Chemistry Letters, 20(1), 153–188. https://doi.org/10.1007/s10311-021-01322-8
  25. Otten-Weinschenker, J., & Mönnigmann, M. (2022). Robust optimization of stiff delayed systems: application to a fluid catalytic cracking unit. Optimization and Engineering, 23(4), 2025–2050. https://doi.org/10.1007/s11081-021-09654-8
  26. Pachovsky, R. A., & Wojciechowski, B. W. (1975). Temperature effects on conversion in the catalytic cracking of a dewaxed neutral distillate. Journal of Catalysis, 37(1), 120–126. https://doi.org/10.1016/0021-9517(75)90140-2
  27. Pakseresht, P., Yao, Y., Fan, Y., Theuerkauf, J., & Capecelatro, J. (2023). A critical assessment of the Energy Minimization Multi-Scale (EMMS) model. Powder Technology, 425, 118569. https://doi.org/10.1016/j.powtec.2023.118569
  28. Papilo, P., Marimin, M., Hambali, E., Machfud, M., Yani, M., Asrol, M., Evanila, E., Prasetya, H., & Mahmud, J. (2022). Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon, 8(10), e10919. https://doi.org/10.1016/j.heliyon.2022.e10919
  29. Roache, P. J. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123–160. https://doi.org/10.1146/annurev.fluid.29.1.123
  30. Sadeghbeigi, R. (Ed.). (2020). Fluid Catalytic Cracking Handbook (Fourth Edition). In Fluid Catalytic Cracking Handbook (Fourth Edition) (Fourth Edi, pp. 1–22). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-812663-9.00001-1
  31. Santoso, A., Mulyaningsih, A., Sumari, S., Retnosari, R., Aliyatulmuna, A., Pramesti, I. N., & Asrori, M. R. (2023). Catalytic cracking of off grade crude palm oil to biogasoline using Co-Mo/α-Fe2O3 catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(1), 1886–1899. https://doi.org/10.1080/15567036.2023.2183998
  32. Selalame, T. W., Patel, R., Mujtaba, I. M., & John, Y. M. (2022). A Review of Modelling of the FCC Unit. Part I: The Riser. Energies, 15(1). https://doi.org/10.3390/en15010308
  33. Selalame, T. W., Patel, R., Mujtaba, I. M., & John, Y. M. (2023). Effect of vaporisation models on the FCC riser modelling. In A. C. Kokossis, M. C. Georgiadis, & E. Pistikopoulos (Eds.), 33rd European Symposium on Computer Aided Process Engineering (Vol. 52, pp. 783–788). Elsevier. https://doi.org/10.1016/B978-0-443-15274-0.50125-6
  34. Sugiyono, A., Fitriana, I., Budiman, A. H., & Nurrohim, A. (2020). Prospects for the Development of Green Gasoline and Green Diesel from Crude Palm Oil in Indonesia. Industrial Science and Technology, 981, 202–208. https://doi.org/10.4028/www.scientific.net/MSF.981.202
  35. Theologos, K. N., & Markatos, N. C. (1993). Advanced modeling of fluid catalytic cracking riser‐type reactors. AIChE Journal, 39(6), 1007–1017. https://doi.org/10.1002/aic.690390610
  36. Torres Brauer, N., Serrano Rosales, B., & de Lasa, H. (2021). Single bubble in a 3D sand fluidized bed gasifier environment: A CFD-MPPIC simulation. Chemical Engineering Science, 231, 116291. https://doi.org/10.1016/j.ces.2020.116291
  37. Yu, J., Gao, X., Lu, L., Xu, Y., Li, C., Li, T., & Rogers, W. A. (2021). Validation of a filtered drag model for solid residence time distribution (RTD) prediction in a pilot-scale FCC riser. Powder Technology, 378, 339–347. https://doi.org/10.1016/j.powtec.2020.10.007
  38. Zhang, J., Wu, Z., Li, X., Zhang, Y., Bao, Z., Bai, L., & Wang, F. (2020). Catalytic Cracking of Inedible Oils for the Production of Drop-In Biofuels over a SO42–/TiO2-ZrO2 Catalyst. Energy & Fuels, 34(11), 14204–14214. https://doi.org/10.1021/acs.energyfuels.0c02204
  39. Zhang, M., Yang, Z., Zhao, Y., Lv, M., Lan, X., Shi, X., Gao, J., Li, C., Yuan, Z., & Lin, Y. (2023). A hybrid safety monitoring framework for industrial FCC disengager coking rate based on FPM, CFD, and ML. Process Safety and Environmental Protection, 175, 17–33. https://doi.org/10.1016/j.psep.2023.05.004
  40. Zhong, H., Chen, J., Gao, F., Zhang, J., Zhu, Y., & Niu, B. (2022). 3D virtual full-loop CFD simulation of industrial two-stage FCC reaction-regeneration system. International Journal of Chemical Reactor Engineering, 20(11), 1179–1191. https://doi: 10.1515/ijcre-2021-0249
  41. Zhong, H., Zhang, J., Liang, S., & Zhu, Y. (2020). Two-fluid model with variable particle–particle restitution coefficient: application to the simulation of FCC riser reactor. Particulate Science and Technology, 38(5), 549–558. https://doi.org/10.1080/02726351.2018.1564094
  42. Zhu, C., Jun, Y., Patel, R., & Wang, D. (2011). Interactions of Flow and Reaction in Fluid Catalytic Cracking Risers. AIChE Journal, 59(4), 215–228. https://doi.org/10.1002/aic.12509

Last update:

No citation recorded.

Last update: 2024-11-20 11:20:11

No citation recorded.